IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v121y2019icp108-118.html
   My bibliography  Save this article

Graph-theoretic approach to synchronization of fractional-order coupled systems with time-varying delays via periodically intermittent control

Author

Listed:
  • Xu, Yao
  • Li, Yanzhen
  • Li, Wenxue

Abstract

This paper deals with synchronization problem of fractional-order coupled systems (FOCSs) with time-varying delays via periodically intermittent control. Here, nonlinear coupling, time-varying internal delay and time-varying coupling delay are considered when modeling, which makes our model more general in comparison with the most existing fractional-order models. It is the first time that periodically intermittent control is applied to synchronizing FOCSs with time-varying delays. Combining Lyapunov method with graph-theoretic approach, some synchronization criteria are obtained. Moreover, the synchronization criteria we derive depend on the fractional order α, control gain, control rate and control period. Besides, the synchronization issues of fractional-order coupled chaotic systems with time-varying delays and fractional-order coupled Hindmarsh–Rose neuron systems with time-varying delays are also investigated as applications of our theoretical results, and relevant sufficient conditions are derived. Finally, numerical simulations with two examples are provided in order to demonstrate the effectiveness of the theoretical results and the feasibility of control strategy.

Suggested Citation

  • Xu, Yao & Li, Yanzhen & Li, Wenxue, 2019. "Graph-theoretic approach to synchronization of fractional-order coupled systems with time-varying delays via periodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 108-118.
  • Handle: RePEc:eee:chsofr:v:121:y:2019:i:c:p:108-118
    DOI: 10.1016/j.chaos.2019.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Lin & Yang, Huilan & Wang, Xin & Zhong, Shouming & Wang, Wenqin, 2018. "Synchronization of complex networks with asymmetric coupling via decomposing matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 180-185.
    2. Liang, Song & Wu, Ranchao & Chen, Liping, 2016. "Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 49-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Shuiming & Hou, Meiyuan, 2021. "Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Guo, Beibei & Xiao, Yu, 2023. "Intermittent synchronization for multi-link and multi-delayed large-scale systems with semi-Markov jump and its application of Chua’s circuits," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. He, Xinyi & Wang, Yuhan & Li, Xiaodi, 2021. "Uncertain impulsive control for leader-following synchronization of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    2. Shafiya, M. & Nagamani, G., 2022. "New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    4. Zhou, Jiaying & Zhao, Yi & Wu, ZhaoYan, 2019. "Cluster synchronization of fractional-order directed networks via intermittent pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 22-33.
    5. Weiwei Zhang & Jinde Cao & Ahmed Alsaedi & Fuad Eid S. Alsaadi, 2017. "Synchronization of Time Delayed Fractional Order Chaotic Financial System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-5, October.
    6. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    7. Shafiya, M. & Nagamani, G. & Dafik, D., 2022. "Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 168-186.
    8. Yong Tang & Lang Zhou & Jiahui Tang & Yue Rao & Hongguang Fan & Jihong Zhu, 2023. "Hybrid Impulsive Pinning Control for Mean Square Synchronization of Uncertain Multi-Link Complex Networks with Stochastic Characteristics and Hybrid Delays," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    9. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    10. Fei Qi & Yi Chai & Liping Chen & José A. Tenreiro Machado, 2020. "Delay-Dependent and Order-Dependent Guaranteed Cost Control for Uncertain Fractional-Order Delayed Linear Systems," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    11. Zhang, Yan-Jie & Liu, Song & Yang, Ran & Tan, Ying-Ying & Li, Xiaoyan, 2019. "Global synchronization of fractional coupled networks with discrete and distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 830-837.
    12. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    13. Liu, Wanping & Wu, Xiao & Yang, Wu & Zhu, Xiaofei & Zhong, Shouming, 2019. "Modeling cyber rumor spreading over mobile social networks: A compartment approach," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 214-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:121:y:2019:i:c:p:108-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.