IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v116y2018icp249-260.html
   My bibliography  Save this article

A mathematical model for Creutzfeldt Jacob Disease (CJD)

Author

Listed:
  • Salman, S.M.
  • Ahmed, E.

Abstract

Creutzfeldt Jakob Disease (CJD) is a fatal disease which is transmitted by the ingestion of infectious materials (mainly BSE-contaminated beef). Here a simple mathematical model of its progress is given. Local stability analysis of fixed points of the model is studied. Moreover, codimension-one bifurcation analysis of fixed points is discussed. The model has a variety of bifurcation types such as transcritical, pitchfork and flip bifurcations. Numerical simulations are performed to illustrate analytical results obtained. Despite being a simple model, it discusses a non expected behavior which is increasing the parameter a, the growth rate of the healthy prions, the disease will persist in the population.

Suggested Citation

  • Salman, S.M. & Ahmed, E., 2018. "A mathematical model for Creutzfeldt Jacob Disease (CJD)," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 249-260.
  • Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:249-260
    DOI: 10.1016/j.chaos.2018.09.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918309883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.09.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiuying & Wang, Wendi, 2005. "A discrete epidemic model with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 947-958.
    2. D’Innocenzo, A. & Paladini, F. & Renna, L., 2006. "A numerical investigation of discrete oscillating epidemic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 497-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    2. Isra Al-Shbeil & Noureddine Djenina & Ali Jaradat & Abdallah Al-Husban & Adel Ouannas & Giuseppe Grassi, 2023. "A New COVID-19 Pandemic Model including the Compartment of Vaccinated Individuals: Global Stability of the Disease-Free Fixed Point," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    3. Pang, Guoping & Chen, Lansun, 2007. "A delayed SIRS epidemic model with pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1629-1635.
    4. Zhang, Tailei & Liu, Junli & Teng, Zhidong, 2009. "Bifurcation analysis of a delayed SIS epidemic model with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 563-576.
    5. Zhang, Tailei, 2015. "Permanence and extinction in a nonautonomous discrete SIRVS epidemic model with vaccination," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 716-729.
    6. Begoña Cantó & Carmen Coll & Maria Jesús Pagán & Joan Poveda & Elena Sánchez, 2021. "A Mathematical Model to Control the Prevalence of a Directly and Indirectly Transmitted Disease," Mathematics, MDPI, vol. 9(20), pages 1-15, October.
    7. Yang, Junyuan & Zhang, Fengqin & Li, Xuezhi, 2009. "Epidemic model with vaccinated age that exhibits backward bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1721-1731.
    8. Jin, Yu & Wang, Wendi & Xiao, Shiwu, 2007. "An SIRS model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1482-1497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:249-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.