IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v115y2018icp268-282.html
   My bibliography  Save this article

Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays

Author

Listed:
  • Maharajan, C.
  • Raja, R.
  • Cao, Jinde
  • Rajchakit, G.
  • Alsaedi, Ahmed

Abstract

This paper investigates the problem of passivity and exponential passivity for neutral-type neural networks (NNNs) with leakage, multiple discrete delay and distributed time-delay, via some novel sufficient conditions. Based on an appropriate Lyapunov-Krasovskii functional (LKF), free weighting matrix approach and some inequality techniques, enhanced passivity criteria for the concerned neural networks is established in the form of Linear matrix inequalities (LMIs). The feasibility of the attained passivity and exponential passivity criterions easily verified by the aid of LMI control toolbox in MATLAB software. Furthermore, we have compared our method with previous one in the existing literature, which depicts its less conservativeness. To substantiate the superiority and effectiveness of our analytical design, two examples with their numerical simulations are provided.

Suggested Citation

  • Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Alsaedi, Ahmed, 2018. "Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 268-282.
  • Handle: RePEc:eee:chsofr:v:115:y:2018:i:c:p:268-282
    DOI: 10.1016/j.chaos.2018.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918305824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Qiankun & Wang, Zidong, 2008. "Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3314-3326.
    2. Liu, Hailin & Chen, Guohua, 2007. "Delay-dependent stability for neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 171-177.
    3. Qiu, Jiqing & Yang, Hongjiu & Zhang, Jinhui & Gao, Zhifeng, 2009. "New robust stability criteria for uncertain neural networks with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 579-585.
    4. Hamid Karimi, 2013. "Passivity-based output feedback control of Markovian jump systems with discrete and distributed time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(7), pages 1290-1300.
    5. Raja, R. & Zhu, Quanxin & Senthilraj, S. & Samidurai, R., 2015. "Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1050-1069.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Ruiyuan & Guo, Yingxin & Wang, Fei, 2020. "Quasi-synchronization of heterogeneous neural networks with distributed and proportional delays via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Janejira Tranthi & Thongchai Botmart & Wajaree Weera & Piyapong Niamsup, 2019. "A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays," Mathematics, MDPI, vol. 7(8), pages 1-18, August.
    3. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    4. Alsaedi, Ahmed & Cao, Jinde & Ahmad, Bashir & Alshehri, Ahmed & Tan, Xuegang, 2022. "Synchronization of master-slave memristive neural networks via fuzzy output-based adaptive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Sang, Hong & Zhao, Ying & Wang, Peng & Wang, Yuzhong & Yu, Shuanghe & Dimirovski, Georgi M., 2023. "Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Liu, Yang & Zhang, Zhenzhen & Chen, Hao & Zhong, Shouming, 2023. "A memory behavior related hybrid event-triggered mechanism for an improved robust control on neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 1-20.
    7. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Chang, Wenting & Sang, Hong & Guo, Liangdong & Wu, Libing & Dimirovski, Georgi M., 2024. "Integrated L∞ anti-disturbance synchronization control for switched neural networks with unknown delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Yu Yao & Guodong Zhang & Yan Li, 2023. "Fixed/Preassigned-Time Stabilization for Complex-Valued Inertial Neural Networks with Distributed Delays: A Non-Separation Approach," Mathematics, MDPI, vol. 11(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    2. Vadivel, R. & Hammachukiattikul, Porpattama & Rajchakit, G. & Syed Ali, M. & Unyong, Bundit, 2021. "Finite-time event-triggered approach for recurrent neural networks with leakage term and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 765-790.
    3. Samidurai, Rajendran & Manivannan, Raman, 2015. "Robust passivity analysis for stochastic impulsive neural networks with leakage and additive time-varying delay components," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 743-762.
    4. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    5. Cui, Kaiyan & Song, Zhanjie & Zhang, Shuo, 2022. "Stability of neutral-type neural network with Lévy noise and mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Liu, Jinhai & Su, Hanguang & Ma, Yanjuan & Wang, Gang & Wang, Yuan & Zhang, Kun, 2016. "Chaos characteristics and least squares support vector machines based online pipeline small leakages detection," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 656-669.
    7. Chen, Hao & Sun, Jitao, 2012. "Stability analysis for coupled systems with time delay on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 528-534.
    8. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    9. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Cao, Jinde & Guerrini, Luca & Cheng, Zunshui, 2019. "Stability and Hopf bifurcation of controlled complex networks model with two delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 21-29.
    11. Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Tu, Zhengwen & Alsaedi, Ahmed, 2018. "LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 33-55.
    12. P. Balasubramaniam & G. Nagamani, 2011. "Global Robust Passivity Analysis for Stochastic Interval Neural Networks with Interval Time-Varying Delays and Markovian Jumping Parameters," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 197-215, April.
    13. Wei, Linna & Chen, Wu-Hua & Huang, Ganji, 2015. "Globally exponential stabilization of neural networks with mixed time delays via impulsive control," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 10-26.
    14. Zhang, Chuan & Wang, Xingyuan & Luo, Chao & Li, Junqiu & Wang, Chunpeng, 2018. "Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 251-264.
    15. Cheng, Pei & Deng, Feiqi, 2010. "Global exponential stability of impulsive stochastic functional differential systems," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1854-1862, December.
    16. Peng, Shiguo & Jia, Baoguo, 2010. "Some criteria on pth moment stability of impulsive stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1085-1092, July.
    17. Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    18. Tian, Junkang & Xu, Dongsheng, 2009. "New asymptotic stability criteria for neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1916-1922.
    19. Senan, Sibel & Arik, Sabri, 2009. "New results for global robust stability of bidirectional associative memory neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2106-2114.
    20. Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:115:y:2018:i:c:p:268-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.