IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v109y2018icp238-245.html
   My bibliography  Save this article

Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform

Author

Listed:
  • Thabet, Hayman
  • Kendre, Subhash

Abstract

This paper introduces an efficient fractional differential transform that is called “conformable fractional partial differential transform (CFPDT)” and its properties for solving linear and nonlinear conformable space-time fractional partial differential equations (CSTFPDEs). Moreover, a CFPDT is more practical and helpful for solving abroad CSTFPDEs. Analytical solutions to linear Navier–Stokes equation and nonlinear gas dynamic equations in sense of conformable space-time fractional partial derivatives are successfully obtained to confirm the accuracy and efficiency of the proposed transform.

Suggested Citation

  • Thabet, Hayman & Kendre, Subhash, 2018. "Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 238-245.
  • Handle: RePEc:eee:chsofr:v:109:y:2018:i:c:p:238-245
    DOI: 10.1016/j.chaos.2018.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918300973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Çerdik Yaslan, 2021. "Numerical solution of the nonlinear conformable space–time fractional partial differential equations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 407-419, June.
    2. Li, Mengmeng & Wang, JinRong, 2022. "Existence results and Ulam type stability for conformable fractional oscillating system with pure delay," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Chaudhary, Manish & Kumar, Rohit & Singh, Mritunjay Kumar, 2020. "Fractional convection-dispersion equation with conformable derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Ma, Wangrong & Jin, Maozhu & Liu, Yifeng & Xu, Xiaobo, 2019. "Empirical analysis of fractional differential equations model for relationship between enterprise management and financial performance," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 17-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Baogui Xin & Wei Peng & Yekyung Kwon & Yanqin Liu, 2019. "Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk," Papers 1903.12267, arXiv.org, revised Apr 2019.
    3. Korkmaz, Alper, 2017. "Exact solutions of space-time fractional EW and modified EW equations," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 132-138.
    4. Khaled, Khachnaoui, 2021. "Nehari type solutions for fractional Hamiltonian systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Ahmed A. El-Deeb & Jan Awrejcewicz, 2021. "Steffensen-Type Inequalities with Weighted Function via ( γ , a )-Nabla-Conformable Integral on Time Scales," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    6. Ahmed A. El-Deeb & Jan Awrejcewicz, 2021. "Novel Fractional Dynamic Hardy–Hilbert-Type Inequalities on Time Scales with Applications," Mathematics, MDPI, vol. 9(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:109:y:2018:i:c:p:238-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.