IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v34y2015icp1-18.html
   My bibliography  Save this article

Environmental growth convergence among Chinese regions

Author

Listed:
  • Boussemart, Jean Philippe
  • Leleu, Hervé
  • Shen, Zhiyang

Abstract

Since the end of the 20th century, numerous studies have analyzed Chinese economic development to gauge whether China's rapid growth is sustainable. Most of these studies focused on assessing total factor productivity (TFP) in Chinese mainland provinces but suffered from methodological weaknesses by assuming constant returns to scale (CRS) for the production frontier and/or incorrectly modeling variables returns to scale (VRS) technology taking into account bad output such as carbon dioxide emissions. Our paper offers a right non-parametric programming framework based on weak disposability and VRS assumptions to estimate environmental growth convergence among Chinese regions characterized by size heterogeneity. We explicitly separate regional efficiency gaps into two components: The first studies the technical catching-up process on each one (technical effect), and the second reveals convergence or divergence in the combinations of input and output among regions (structural effect). Moreover, carbon shadow price levels for provinces can be derived through the dual version of our activity analysis framework. Our empirical work focuses on 30 Chinese regions from 1997 to 2010. The results emphasize that environmental growth convergence among regions has mainly relied on the structural effect. We find that the structural effect largely depends on the pollution cost convergence and not on the evolution of the relative prices of capital or labor. The carbon shadow price is increasing at an annual rate of 2.5% and was evaluated around 864 yuan per ton in 2010 in China while regional estimates show significant disparities at the beginning of the period.

Suggested Citation

  • Boussemart, Jean Philippe & Leleu, Hervé & Shen, Zhiyang, 2015. "Environmental growth convergence among Chinese regions," China Economic Review, Elsevier, vol. 34(C), pages 1-18.
  • Handle: RePEc:eee:chieco:v:34:y:2015:i:c:p:1-18
    DOI: 10.1016/j.chieco.2015.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X15000334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2015.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Shiyi & Golley, Jane, 2014. "‘Green’ productivity growth in China's industrial economy," Energy Economics, Elsevier, vol. 44(C), pages 89-98.
    2. Charles R. Hulten & Edwin R. Dean & Michael J. Harper, 2001. "New Developments in Productivity Analysis," NBER Books, National Bureau of Economic Research, Inc, number hult01-1.
    3. Feng, Guohua & Serletis, Apostolos, 2014. "Undesirable outputs and a primal Divisia productivity index based on the directional output distance function," Journal of Econometrics, Elsevier, vol. 183(1), pages 135-146.
    4. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
    5. Gary D. Ferrier & Hervé Leleu & Vivian G. Valdmanis & Michael Vardanyan, 2018. "A directional distance function approach for identifying the input/output status of medical residents," Applied Economics, Taylor & Francis Journals, vol. 50(9), pages 1006-1021, February.
    6. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    7. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    8. Robert M. Solow, 1994. "Perspectives on Growth Theory," Journal of Economic Perspectives, American Economic Association, vol. 8(1), pages 45-54, Winter.
    9. Durlauf, Steven N & Johnson, Paul A, 1995. "Multiple Regimes and Cross-Country Growth Behaviour," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 365-384, Oct.-Dec..
    10. Selin Özyurt & Jean-Pascal Guironnet, 2011. "Productivity, scale effect and technological catch-up in Chinese regions," Post-Print halshs-00657717, HAL.
    11. Christopoulos, Dimitris K., 2007. "Explaining country's efficiency performance," Economic Modelling, Elsevier, vol. 24(2), pages 224-235, March.
    12. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    13. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    14. Nazrul Islam, 2001. "Different Approaches to International Comparison of Total Factor Productivity," NBER Chapters, in: New Developments in Productivity Analysis, pages 465-508, National Bureau of Economic Research, Inc.
    15. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    16. Nazrul Islam, 2003. "What have We Learnt from the Convergence Debate?," Journal of Economic Surveys, Wiley Blackwell, vol. 17(3), pages 309-362, July.
    17. Li, Sung-Ko, 1995. "Relations between convexity and homogeneity in multioutput technologies," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 311-318.
    18. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    19. Abramovitz, Moses, 1986. "Catching Up, Forging Ahead, and Falling Behind," The Journal of Economic History, Cambridge University Press, vol. 46(2), pages 385-406, June.
    20. Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy & Marklund, Per-Olov & Zhou, Wenchao, 2012. "Productivity: Should We Include Bads?," CERE Working Papers 2012:13, CERE - the Center for Environmental and Resource Economics.
    21. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    22. Hervé Leleu, 2013. "Duality of Shephard’s weakly disposable technology under a directional output distance function," Working Papers 2013-ECO-03, IESEG School of Management.
    23. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    24. Walter Briec & Benoit Dervaux & Hervé Leleu, 2003. "Aggregation of Directional Distance Functions and Industrial Efficiency," Journal of Economics, Springer, vol. 79(3), pages 237-261, July.
    25. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junwei Ma & Jianhua Wang & Philip Szmedra, 2020. "Does Environmental Innovation Improve Environmental Productivity?—An Empirical Study Based on the Spatial Panel Data Model of Chinese Urban Agglomerations," IJERPH, MDPI, vol. 17(17), pages 1-18, August.
    2. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
    3. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    4. Tsun Se Cheong & Yanrui Wu & Jianxin Wu, 2016. "Evolution of carbon dioxide emissions in Chinese cities: trends and transitional dynamics," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(3), pages 357-377, July.
    5. Yusi Cheng & Xuejie Bai & Yung‐Ho Chiu, 2023. "Performance evaluation for health‐care sectors using a dynamic network data envelopment analysis approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2237-2253, June.
    6. Deng, Haiyan & Zheng, Wangyi & Shen, Zhiyang & Štreimikienė, Dalia, 2023. "Does fiscal expenditure promote green agricultural productivity gains: An investigation on corn production," Applied Energy, Elsevier, vol. 334(C).
    7. Shen, Zhiyang & Baležentis, Tomas & Chen, Xueli & Valdmanis, Vivian, 2018. "Green growth and structural change in Chinese agricultural sector during 1997–2014," China Economic Review, Elsevier, vol. 51(C), pages 83-96.
    8. Biagia De Devitiis & Ornella Wanda Maietta, 2015. "Shadow Prices of Human Capital in Agriculture. Evidence from European FADN Regions," CSEF Working Papers 415, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    9. Guangming Rao & Bin Su & Jinlian Li & Yong Wang & Yanhua Zhou & Zhaolin Wang, 2019. "Carbon Sequestration Total Factor Productivity Growth and Decomposition: A Case of the Yangtze River Economic Belt of China," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    10. Yang, Jun & Zhang, Tengfei & Sheng, Pengfei & Shackman, Joshua D., 2016. "Carbon dioxide emissions and interregional economic convergence in China," Economic Modelling, Elsevier, vol. 52(PB), pages 672-680.
    11. Ning Zhu & Xiang Dai & Tomas Baležentis & Dalia Streimikiene & Zhiyang Shen, 2022. "Estimating production gains from international cooperation: Evidence from countries along the Belt and Road," Economic Change and Restructuring, Springer, vol. 55(2), pages 715-736, May.
    12. Zhensheng Chen & Xueli Chen & Tomas Baležentis & Xiaoqing Gan & Vivian Valdmanis, 2020. "Productivity change and its driving forces in Chinese healthcare sector," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-16, December.
    13. Ulucak, Zübeyde Şentürk & İlkay, Salih Çağrı & Özcan, Burcu & Gedikli, Ayfer, 2020. "Financial globalization and environmental degradation nexus: Evidence from emerging economies," Resources Policy, Elsevier, vol. 67(C).
    14. Yongzhong Jiang & Xueli Chen & Vivian Valdmanis & Tomas Baležentis, 2019. "Evaluating Economic and Environmental Performance of the Chinese Industry Sector," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    15. Zhiyang Shen & Vivian Valdmanis, 2020. "Identifying the contribution to hospital performance among Chinese regions by an aggregate directional distance function," Health Care Management Science, Springer, vol. 23(1), pages 142-152, March.
    16. Wenyin Cheng & Zhusong Yang & Xia Pan & Tomas Baležentis & Xueli Chen, 2020. "Evolution of Carbon Shadow Prices in China’s Industrial Sector during 2003–2017: A By-Production Approach," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    17. Chen, Lei & Wang, Ying-Ming & Lai, Fujun, 2017. "Semi-disposability of undesirable outputs in data envelopment analysis for environmental assessments," European Journal of Operational Research, Elsevier, vol. 260(2), pages 655-664.
    18. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Boussemart & Hervé Leleu, 2008. "Comparing TFP Catching-up and Capital Deepening in US and European Growths: A Directional Distance Function Approach," Working Papers 2008-ECO-01, IESEG School of Management.
    2. Boussemart, Jean-Philippe & Leleu, Hervé & Mensah, Edward & Shitikova, Karina, 2020. "Technological catching-up and structural convergence among US industries," Economic Modelling, Elsevier, vol. 84(C), pages 135-146.
    3. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    4. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    5. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
    6. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang, 2017. "Worldwide carbon shadow prices during 1990–2011," Energy Policy, Elsevier, vol. 109(C), pages 288-296.
    7. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    8. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    9. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    10. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    11. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    12. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    13. Fang, Lei, 2020. "Opening the “black box” of environmental production technology in a nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 769-780.
    14. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    15. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    16. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).
    17. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    18. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    19. Jianxin Wu & Chunbo Ma, 2019. "The Convergence of China’s Marginal Abatement Cost of CO2: An Emission-Weighted Continuous State Space Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1099-1119, April.
    20. Liu, Haiying & Owens, Katharine A. & Yang, Ke & Zhang, Chunhong, 2020. "Pollution abatement costs and technical changes under different environmental regulations," China Economic Review, Elsevier, vol. 62(C).

    More about this item

    Keywords

    Growth convergence; Catching-up; Undesirable output; Carbon dioxide emissions; Shadow price; Weak disposability;
    All these keywords.

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:34:y:2015:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.