IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp357-367.html
   My bibliography  Save this article

Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency

Author

Listed:
  • Yan, Shuiping
  • Fang, Mengxiang
  • Wang, Zhen
  • Luo, Zhongyang

Abstract

In order to give a better understanding for the selection of suitable absorbents for the novel membrane vacuum regeneration technology (MVR) which has the potential to reduce CO2 energy requirement by utilizing the waste heat or low-grade energy, an experimental study to determine the relationships between chemical structure and vacuum regeneration behavior of CO2 absorbents at 70°C and 10kPa was performed. Eleven typical absorbents with different functional groups in their chemical structures were investigated in terms of vacuum regeneration efficiencies. Results showed that the regeneration efficiency decreased with an increase of number of activated hydrogen atom in amine group and decreased with the number of hydroxyl group. Especially, more attention should be paid to these alkanolamines with one hydrogen atom in amine group and two or more hydroxyl groups in the structures due to their better comprehensive performance in regeneration, absorbent loss and CO2 absorption aspects. Increasing the carbon chain length and amine groups in the absorbent structure contributed to the improvement of regeneration performance and reduction of absorbent volatile loss. These absorbents with a four carbon chain length bonded at amine group might be more attractive to MVR. Furthermore, polyamines were superior to monoamines in terms of higher regeneration efficiencies and lower absorbent losses. Additionally, the individual effects of the potassium carboxylate group and hydroxymethylene group were also compared in this study. Results showed that amino acid salts were more appropriate for MVR due to their advanced regeneration performance, negligible absorbent losses and higher surface tensions. In this study, the regeneration performance of the same absorbents was also investigated by using the conventional heating regeneration method at 75°C and ambient pressure (HRM). It could be found that although longer regeneration time and relatively higher regeneration temperature were given for HRM, it was still inferior to MVR in terms of its lower regeneration efficiency.

Suggested Citation

  • Yan, Shuiping & Fang, Mengxiang & Wang, Zhen & Luo, Zhongyang, 2012. "Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency," Applied Energy, Elsevier, vol. 98(C), pages 357-367.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:357-367
    DOI: 10.1016/j.apenergy.2012.03.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912002759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.03.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
    2. Wang, Xianfeng & Akhmedov, Novruz G. & Hopkinson, David & Hoffman, James & Duan, Yuhua & Egbebi, Adefemi & Resnik, Kevin & Li, Bingyun, 2016. "Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2," Applied Energy, Elsevier, vol. 161(C), pages 41-47.
    3. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    4. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    5. Guo, Yunzhao & Zhang, Huiping & Fu, Kaiyun & Chen, Xianfu & Qiu, Minghui & Fan, Yiqun, 2023. "Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption," Energy, Elsevier, vol. 274(C).
    6. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    7. Kessler, Elmar & Ninni, Luciana & Breug-Nissen, Tanja & Willy, Benjamin & Schneider, Rolf & Irfan, Muhammad & Rolker, Jörn & Thiel, Werner R. & von Harbou, Erik & Hasse, Hans, 2021. "Speciation in CO2-loaded aqueous solutions of sixteen triacetoneamine-derivates (EvAs) and elucidation of structure-property relationships," OSF Preprints x7r34, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:357-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.