IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp253-260.html
   My bibliography  Save this article

Coordinated algorithms for distributed state estimation with synchronized phasor measurements

Author

Listed:
  • Yang, Xuan
  • Zhang, Xiao-Ping
  • Zhou, Suyang

Abstract

This paper presents a novel coordinated algorithm for distributed state estimation where Phasor Measurement Units (PMUs) measurements are considered at both subsystem level and coordination level. At the coordination level, the linear state estimation with PMUs is carried out to coordinate the voltage states of boundary buses where the computational time can be significantly reduced. Tests on the IEEE 30-bus and 118-bus system are used to show the performance of the novel distributed state estimation algorithms and compare results with the previous distributed state estimation algorithm in terms of both the estimation quality and computational performance. The distributed state estimation is compatible with the distributed control architecture for the operation of the future Smart Grid, where a large power system can be decomposed into subsystems and the subsystems can be estimated, operated and controlled in the distributed environments.

Suggested Citation

  • Yang, Xuan & Zhang, Xiao-Ping & Zhou, Suyang, 2012. "Coordinated algorithms for distributed state estimation with synchronized phasor measurements," Applied Energy, Elsevier, vol. 96(C), pages 253-260.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:253-260
    DOI: 10.1016/j.apenergy.2011.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    2. Zhao, Zhida & Yu, Hao & Li, Peng & Li, Peng & Kong, Xiangyu & Wu, Jianzhong & Wang, Chengshan, 2019. "Optimal placement of PMUs and communication links for distributed state estimation in distribution networks," Applied Energy, Elsevier, vol. 256(C).
    3. Zou, Cong & Li, Bing & Liu, Feiyang & Xu, Bingrui, 2022. "Event-Triggered μ-state estimation for Markovian jumping neural networks with mixed time-delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    5. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    6. Das, Laya & Garg, Dinesh & Srinivasan, Babji, 2020. "NeuralCompression: A machine learning approach to compress high frequency measurements in smart grid," Applied Energy, Elsevier, vol. 257(C).
    7. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    8. Luis Vargas & Henrry Moyano, 2023. "A Novel Multi-Area Distribution State Estimation Approach with Nodal Redundancy," Energies, MDPI, vol. 16(10), pages 1-19, May.
    9. Ruizi Ma, 2021. "Adaptive Tolerant State Estimation under Model Uncertainty in Power Systems," Energies, MDPI, vol. 14(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:253-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.