IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp357-363.html
   My bibliography  Save this article

Innovative design of non-convective zone of salt gradient solar pond for optimum thermal performance and stability

Author

Listed:
  • Husain, M.
  • Sharma, G.
  • Samdarshi, S.K.

Abstract

Stability of salt gradient solar pond salinity profile is examined under transient thermal phase. The analysis is done for straight as well as parabolic salinity profile. It is observed that the stability criterion at the upper interface of salinity profile is satisfied for a thin non-convective zone. However, a thin non-convective zone is unable to provide adequate insulation. Consequently the storage zone of the pond does not warm-up to desirable high temperature. The present work proposes that in order to acquire a high temperature, maintaining the stability of salinity profile, an additional zone below the interface of upper convective zone and non-convective zone should be introduced. Higher salinity gradient can be maintained in this additional intermediate zone. Thermal performance and gradient stability analysis of such a pond is presented here.

Suggested Citation

  • Husain, M. & Sharma, G. & Samdarshi, S.K., 2012. "Innovative design of non-convective zone of salt gradient solar pond for optimum thermal performance and stability," Applied Energy, Elsevier, vol. 93(C), pages 357-363.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:357-363
    DOI: 10.1016/j.apenergy.2011.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Husain, M. & Patil, P.S. & Patil, S.R. & Samdarshi, S.K., 2003. "Computer simulation of salt gradient solar pond’s thermal behaviour," Renewable Energy, Elsevier, vol. 28(5), pages 769-802.
    2. Bezir, Nalan Ç. & Dönmez, Orhan & Kayali, Refik & Özek, Nuri, 2008. "Numerical and experimental analysis of a salt gradient solar pond performance with or without reflective covered surface," Applied Energy, Elsevier, vol. 85(11), pages 1102-1112, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    2. Amigo, José & Suárez, Francisco, 2018. "Ground heat storage beneath salt-gradient solar ponds under constant heat demand," Energy, Elsevier, vol. 144(C), pages 657-668.
    3. Suárez, Francisco & Ruskowitz, Jeffrey A. & Childress, Amy E. & Tyler, Scott W., 2014. "Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling," Applied Energy, Elsevier, vol. 117(C), pages 1-10.
    4. Ganguly, Sayantan & Date, Abhijit & Akbarzadeh, Aliakbar, 2019. "On increasing the thermal mass of a salinity gradient solar pond with external heat addition: A transient study," Energy, Elsevier, vol. 168(C), pages 43-56.
    5. Bozkurt, Ismail & Deniz, Sibel & Karakilcik, Mehmet & Dincer, Ibrahim, 2015. "Performance assessment of a magnesium chloride saturated solar pond," Renewable Energy, Elsevier, vol. 78(C), pages 35-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yufeng & Yin, Fang & Shi, Lihua & Wence, Sun & Li, Nan & Liu, Hong, 2011. "Effects of porous media on thermal and salt diffusion of solar pond," Applied Energy, Elsevier, vol. 88(7), pages 2445-2453, July.
    2. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    3. Bozkurt, Ismail & Deniz, Sibel & Karakilcik, Mehmet & Dincer, Ibrahim, 2015. "Performance assessment of a magnesium chloride saturated solar pond," Renewable Energy, Elsevier, vol. 78(C), pages 35-41.
    4. Amigo, José & Suárez, Francisco, 2018. "Ground heat storage beneath salt-gradient solar ponds under constant heat demand," Energy, Elsevier, vol. 144(C), pages 657-668.
    5. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    6. Kurt, Hüseyin & Ozkaymak, Mehmet & Binark, A. Korhan, 2006. "Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation," Applied Energy, Elsevier, vol. 83(4), pages 324-342, April.
    7. Bezir, Nalan Ç. & Dönmez, Orhan & Kayali, Refik & Özek, Nuri, 2008. "Numerical and experimental analysis of a salt gradient solar pond performance with or without reflective covered surface," Applied Energy, Elsevier, vol. 85(11), pages 1102-1112, November.
    8. Saxena, A.K. & Sugandhi, S. & Husain, M., 2009. "Significant depth of ground water table for thermal performance of salt gradient solar pond," Renewable Energy, Elsevier, vol. 34(3), pages 790-793.
    9. Ridha Boudhiaf & Ali Ben Moussa & Mounir Baccar, 2012. "A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond," Energies, MDPI, vol. 5(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:357-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.