IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i9p2949-2954.html
   My bibliography  Save this article

Experimental study of fuel stratification for HCCI high load extension

Author

Listed:
  • Yang, Dong-bo
  • Wang, Zhi
  • Wang, Jian-Xin
  • Shuai, Shi-jin

Abstract

Fuel stratification has the potential to extend the high load limits of homogeneous charge compression ignition (HCCI) combustion by improving the control over the combustion phase as well as reducing the maximum rate of pressure rise. In this work, experiments were carried out on a single-cylinder engine equipped with a dual-fuel-injection system – a port injector for preparing a homogeneous charge and a direct in-cylinder injector for creating the desired fuel stratification. The homogeneous charge was prepared using gasoline fuel while the fuel stratification was created with the in-cylinder injection of either gasoline or methanol during the compression stroke. The test results indicate that high load extension using gasoline for fuel stratification is limited by the trade-off between CO and NOx emissions. Weak gasoline stratification leads to an advanced combustion phase and an increase in NOx emission, while increasing the stratification with a higher quantity of gasoline direct injection, results in a significant deterioration in both the combustion efficiency and the CO emission. Engine tests using methanol for the stratification retarded the ignition timing and prolonged the combustion duration, resulting in a substantial reduction in the maximum rate of pressure rise and the maximum cylinder pressure – a prerequisite for HCCI high load extension. Further tests were then conducted with methanol stratification to extend the HCCI load limit and to optimize the stratified methanol-to-gasoline fuel ratio. Compared to gasoline HCCI, a 50% increase in the maximum IMEP attained was achieved with an acceptable maximum pressure rise rate of 0.5MPa/°CA while maintaining a high thermal efficiency.

Suggested Citation

  • Yang, Dong-bo & Wang, Zhi & Wang, Jian-Xin & Shuai, Shi-jin, 2011. "Experimental study of fuel stratification for HCCI high load extension," Applied Energy, Elsevier, vol. 88(9), pages 2949-2954.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2949-2954
    DOI: 10.1016/j.apenergy.2011.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2949-2954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.