IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i9p2778-2784.html
   My bibliography  Save this article

Steady and unsteady 3D non-isothermal modeling of PEM fuel cells with the effect of non-equilibrium phase transfer

Author

Listed:
  • Wu, Hao
  • Berg, Peter
  • Li, Xianguo

Abstract

A 3D model that fully couples multi-species and multi-phase transport, electrochemical kinetics, and heat transfer processes has been developed. The non-equilibrium membrane water absorption/desorption processes along with non-equilibrium condensation/evaporation processes have been investigated utilizing this comprehensive model. In addition, the fallacious assumption that water is produced in vapor phase during the half cell electrochemical reaction is addressed for the first time. The difference and relationship of the cell output current density among three water production mechanisms are exhibited to show the potential error induced by vapor or liquid production assumptions. The present model is capable of predicting transient phenomena within the cell as well. Our results show that compared to the liquid production modeling the dynamic response of PEM fuel cells in vapor production modeling is significantly overestimated owing to the sluggish condensation process.

Suggested Citation

  • Wu, Hao & Berg, Peter & Li, Xianguo, 2010. "Steady and unsteady 3D non-isothermal modeling of PEM fuel cells with the effect of non-equilibrium phase transfer," Applied Energy, Elsevier, vol. 87(9), pages 2778-2784, September.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2778-2784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00260-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    2. Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2012. "Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 95(C), pages 50-63.
    3. Ceballos, J.O. & Ordóñez, L.C. & Sierra, J.M., 2024. "Water saturation distribution in a PEMFC at the cathode side using OpenFOAM," Renewable Energy, Elsevier, vol. 222(C).
    4. Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
    5. Xing, Lei & Liu, Xiaoteng & Alaje, Taiwo & Kumar, Ravi & Mamlouk, Mohamed & Scott, Keith, 2014. "A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell," Energy, Elsevier, vol. 73(C), pages 618-634.
    6. Wang, H.Y. & Yang, W.J. & Kim, Y.B., 2014. "Analyzing in-plane temperature distribution via a micro-temperature sensor in a unit polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 124(C), pages 148-155.
    7. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    8. Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
    9. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Saldaña, G. & Oñederra, O., 2019. "Analysis of electrochemical and thermal models and modeling techniques for polymer electrolyte membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    11. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    12. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    13. Perng, Shiang-Wuu & Wu, Horng-Wen, 2011. "Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel," Applied Energy, Elsevier, vol. 88(1), pages 52-67, January.
    14. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2778-2784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.