IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i9p1582-1588.html
   My bibliography  Save this article

Minimization of the fuel consumption of a gasoline engine using dynamic optimization

Author

Listed:
  • Saerens, B.
  • Vandersteen, J.
  • Persoons, T.
  • Swevers, J.
  • Diehl, M.
  • Van den Bulck, E.

Abstract

This paper discusses the minimization of the fuel consumption of a gasoline engine through dynamic optimization. The minimization uses a mean value model of the powertrain and vehicle. This model has two state variables: the pressure in the engine intake manifold and the engine speed. The control input is the throttle valve angle. The model is identified on a universal engine dynamometer. Optimal state and control trajectories are calculated using Bock's direct multiple shooting method, implemented in the software MUSCOD-II. The developed approach is illustrated both in simulation and experimentally for a generic test case where a vehicle accelerates from to in . The optimized trajectories yield minimal fuel consumption. The experiments show that a linear engine speed trajectory yields an extra fuel consumption of 13% when compared to the optimal trajectory. It is shown that, with a simple model, a significant amount of fuel can be saved without loss of the fun-to-drive.

Suggested Citation

  • Saerens, B. & Vandersteen, J. & Persoons, T. & Swevers, J. & Diehl, M. & Van den Bulck, E., 2009. "Minimization of the fuel consumption of a gasoline engine using dynamic optimization," Applied Energy, Elsevier, vol. 86(9), pages 1582-1588, September.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1582-1588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00336-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvi, B.L. & Subramanian, K.A., 2015. "Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine," Applied Energy, Elsevier, vol. 139(C), pages 93-103.
    2. Paúl Andrés Molina Campoverde, 2023. "Estimation of Fuel Consumption through PID Signals Using the Real Emissions Cycle in the City of Quito, Ecuador," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    3. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    4. Togun, Necla & Baysec, Sedat, 2010. "Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine," Applied Energy, Elsevier, vol. 87(11), pages 3401-3408, November.
    5. D'Errico, G. & Cerri, T. & Pertusi, G., 2011. "Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models," Applied Energy, Elsevier, vol. 88(3), pages 767-777, March.
    6. Achour, H. & Carton, J.G. & Olabi, A.G., 2011. "Estimating vehicle emissions from road transport, case study: Dublin City," Applied Energy, Elsevier, vol. 88(5), pages 1957-1964, May.
    7. Irene Carvalho & Ricardo Simoes & Arlindo Silva, 2018. "Applying the Theory of Inventive Problem Solving (TRIZ) to identify design opportunities for improved passenger car eco-effectiveness," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 907-932, August.
    8. Molina, S. & Guardiola, C. & Martín, J. & García-Sarmiento, D., 2014. "Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 405-416.
    9. Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1582-1588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.