IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1144-1153.html
   My bibliography  Save this article

Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation

Author

Listed:
  • Colorado-Garrido, D.
  • Santoyo-Castelazo, E.
  • Hernández, J.A.
  • García-Valladares, O.
  • Siqueiros, J.
  • Juarez-Romero, D.

Abstract

A predictive model is developed to describe heat transfer and fluid dynamic behavior of a helical double-pipe vertical evaporator used in an absorption heat transformer integrated to a water purification process. The evaporator uses water as working fluid connected in countercurrent. Heat transfer by conduction in the internal tube wall is considered; in addition the change of phase is carried out into the internal tube. The dynamic model considers equations of continuity, momentum and energy in each flow. The discretized governing equations are coupled using an implicit step by step method. The results of this model are compared with the experimental data in steady state, obtaining good agreement in the evaporation process. The model is also evaluated of form dynamic to determine the principal operation variables that affect the evaporator with the main objective to optimize and control the system.

Suggested Citation

  • Colorado-Garrido, D. & Santoyo-Castelazo, E. & Hernández, J.A. & García-Valladares, O. & Siqueiros, J. & Juarez-Romero, D., 2009. "Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation," Applied Energy, Elsevier, vol. 86(7-8), pages 1144-1153, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1144-1153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00211-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colorado, D. & Hernández, J.A. & García-Valladares, O. & Huicochea, A. & Siqueiros, J., 2011. "Numerical simulation and experimental validation of a helical double-pipe vertical condenser," Applied Energy, Elsevier, vol. 88(6), pages 2136-2145, June.
    2. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    3. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    4. Huminic, Gabriela & Huminic, Angel, 2016. "Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1327-1347.
    5. Colorado, D. & Ali, M.E. & García-Valladares, O. & Hernández, J.A., 2011. "Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution," Energy, Elsevier, vol. 36(2), pages 854-863.
    6. Parrales, Arianna & Colorado, Dario & Huicochea, Armando & Díaz, Juan & Alfredo Hernández, J., 2014. "Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator," Applied Energy, Elsevier, vol. 127(C), pages 156-165.
    7. Yang, Jian-Feng & Zeng, Min & Wang, Qiu-Wang, 2015. "Numerical investigation on shell-side performances of combined parallel and serial two shell-pass shell-and-tube heat exchangers with continuous helical baffles," Applied Energy, Elsevier, vol. 139(C), pages 163-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1144-1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.