IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i12p2566-2573.html
   My bibliography  Save this article

Application of nanofluids in heating buildings and reducing pollution

Author

Listed:
  • Kulkarni, Devdatta P.
  • Das, Debendra K.
  • Vajjha, Ravikanth S.

Abstract

This paper presents nanofluid convective heat transfer and viscosity measurements, and evaluates how they perform heating buildings in cold regions. Nanofluids contain suspended metallic nanoparticles, which increases the thermal conductivity of the base fluid by a substantial amount. The heat transfer coefficient of nanofluids increases with volume concentration. To determine how nanofluid heat transfer characteristics enhance as volume concentration is increased; experiments were performed on copper oxide, aluminum oxide and silicon dioxide nanofluids, each in an ethylene glycol and water mixture. Calculations were performed for conventional finned-tube heat exchangers used in buildings in cold regions. The analysis shows that using nanofluids in heat exchangers could reduce volumetric and mass flow rates, and result in an overall pumping power savings. Nanofluids necessitate smaller heating systems, which are capable of delivering the same amount of thermal energy as larger heating systems using base fluids, but are less expensive; this lowers the initial equipment cost excluding nanofluid cost. This will also reduce environmental pollutants because smaller heating units use less power, and the heat transfer unit has less liquid and material waste to discard at the end of its life cycle.

Suggested Citation

  • Kulkarni, Devdatta P. & Das, Debendra K. & Vajjha, Ravikanth S., 2009. "Application of nanofluids in heating buildings and reducing pollution," Applied Energy, Elsevier, vol. 86(12), pages 2566-2573, December.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:12:p:2566-2573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00095-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:12:p:2566-2573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.