IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i10p2268-2271.html
   My bibliography  Save this article

Radiation energy transfer and maximum conversion efficiency

Author

Listed:
  • Chen, Kuan
  • Chun, Wongee

Abstract

Radiation energy transfer is modeled as the enthalpy flux of photons across the boundary of a thermodynamic system. It is proved that this energy transfer process can be treated as heat transfer. Compression work must be applied to the system to push the photons out. The energy transfer rate and maximum conversion efficiency computed from the model are identical to those determined from the Stefan-Boltzmann law and the Carnot efficiency for blackbody radiation.

Suggested Citation

  • Chen, Kuan & Chun, Wongee, 2009. "Radiation energy transfer and maximum conversion efficiency," Applied Energy, Elsevier, vol. 86(10), pages 2268-2271, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2268-2271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00302-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boehm, R.F., 1986. "Maximum performance of solar heat engines," Applied Energy, Elsevier, vol. 23(4), pages 281-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wijewardane, S. & Goswami, Yogi, 2012. "Exergy of partially coherent thermal radiation," Energy, Elsevier, vol. 42(1), pages 497-502.
    2. Wang, Yangjie & Li, Qiang & Li, Dianhong & Hong, Hui, 2018. "Thermodynamic analysis for a concentrating photovoltaic-photothermochemical hybrid system," Energy, Elsevier, vol. 148(C), pages 528-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
    2. Wijewardane, S. & Goswami, Yogi, 2012. "Exergy of partially coherent thermal radiation," Energy, Elsevier, vol. 42(1), pages 497-502.
    3. Rawat, Rahul & Lamba, Ravita & Kaushik, S.C., 2017. "Thermodynamic study of solar photovoltaic energy conversion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 630-638.
    4. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2268-2271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.