IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i8p735-754.html
   My bibliography  Save this article

Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

Author

Listed:
  • Peng, Changhai
  • Wu, Zhishen

Abstract

Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming.

Suggested Citation

  • Peng, Changhai & Wu, Zhishen, 2008. "Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes," Applied Energy, Elsevier, vol. 85(8), pages 735-754, August.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:8:p:735-754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00033-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Gao, Yuefen, 2010. "Application of improved grey relational projection method to evaluate sustainable building envelope performance," Applied Energy, Elsevier, vol. 87(2), pages 710-720, February.
    2. Ali Bagheri & VĂ©ronique Feldheim & Christos S. Ioakimidis, 2018. "On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings," Energies, MDPI, vol. 11(4), pages 1-20, April.
    3. Bond, Danielle E.M. & Clark, William W. & Kimber, Mark, 2013. "Configuring wall layers for improved insulation performance," Applied Energy, Elsevier, vol. 112(C), pages 235-245.
    4. Yutong Li & Atsushi Teramoto & Takaaki Ohkubo & Akihiro Sugiyama, 2022. "Estimation of Indoor Temperature Increments in Summers Using Heat-Flow Sensors to Assess the Impact of Roof Slab Insulation Methods," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    5. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:8:p:735-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.