IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v80y2005i4p435-447.html
   My bibliography  Save this article

Moderately high temperature water source heat-pumps using a near-azeotropic refrigerant mixture

Author

Listed:
  • Nanxi, Liu
  • Shi, Lin
  • Lizhong, Han
  • Mingshan, Zhu

Abstract

A ternary mixture of R124/R142b/R600a, named HTR01, for moderately high temperature heat pumps, was developed. Tests of material compatibility and oil miscibility showed that the mixture could be used with a R22 compressor in an HTR01 heat-pump system. A 2.92 kW moderately high temperature water source heat pump system was set up with HTR01 as the refrigerant to study the system performance with HTR01. Then, a 300 kW moderately high temperature water source heat pump system was built with HTR01 as the refrigerant to test the performance with a geothermal hot water source. The test showed that the condenser outlet water temperature could reach and hold on about 90 °C with a high coefficient of performance.

Suggested Citation

  • Nanxi, Liu & Shi, Lin & Lizhong, Han & Mingshan, Zhu, 2005. "Moderately high temperature water source heat-pumps using a near-azeotropic refrigerant mixture," Applied Energy, Elsevier, vol. 80(4), pages 435-447, April.
  • Handle: RePEc:eee:appene:v:80:y:2005:i:4:p:435-447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00024-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shengjun & Wang, Huaixin & Guo, Tao, 2010. "Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures," Applied Energy, Elsevier, vol. 87(5), pages 1554-1561, May.
    2. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    3. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    4. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    6. Wu, Di & Hu, Bin & Wang, R.Z., 2018. "Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants," Renewable Energy, Elsevier, vol. 116(PA), pages 775-785.
    7. Vannoni, Alberto & Sorce, Alessandro & Traverso, Alberto & Fausto Massardo, Aristide, 2023. "Large size heat pumps advanced cost functions introducing the impact of design COP on capital costs," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:80:y:2005:i:4:p:435-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.