IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v80y2005i4p383-399.html
   My bibliography  Save this article

Theoretical performances of various refrigerant-absorbent pairs in a vapor-absorption refrigeration cycle by the use of equations of state

Author

Listed:
  • Yokozeki, A.

Abstract

The vapor-absorption refrigeration cycle is an old and well-established technique, particularly with ammonia/water and water/LiBr systems. New types of refrigerant-absorbent pairs are also being actively studied. Modeling the cycle performance requires thermodynamic properties, which have been largely based on empirical correlation equations fitted to a large amount of experimental data such as solubility at various temperatures, pressures, and compositions. In this report, we have demonstrated, for the first time, a thermodynamically consistent model based on the equations of state for refrigerant-absorbent mixtures. Various commonly known binary-pairs for the absorption cycle are used as examples. Cycle performances and some new insights on understanding the cycle process are shown.

Suggested Citation

  • Yokozeki, A., 2005. "Theoretical performances of various refrigerant-absorbent pairs in a vapor-absorption refrigeration cycle by the use of equations of state," Applied Energy, Elsevier, vol. 80(4), pages 383-399, April.
  • Handle: RePEc:eee:appene:v:80:y:2005:i:4:p:383-399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00080-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Jianshu & Chen, Wei & Xie, Ningning & Ma, Linrui & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2023. "Dynamic characteristics and optimizations of the proposed combined cold and power system with integrated advanced adiabatic compressed air energy storage and double-effect compression-absorption refri," Energy, Elsevier, vol. 283(C).
    2. Ruiz, E. & Ferro, V.R. & de Riva, J. & Moreno, D. & Palomar, J., 2014. "Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations," Applied Energy, Elsevier, vol. 123(C), pages 281-291.
    3. Yokozeki, A. & Shiflett, Mark B., 2007. "Vapor-liquid equilibria of ammonia + ionic liquid mixtures," Applied Energy, Elsevier, vol. 84(12), pages 1258-1273, December.
    4. Abdullah, Mohammad Omar & Hieng, Tang Chung, 2010. "Comparative analysis of performance and techno-economics for a H2O-NH3-H2 absorption refrigerator driven by different energy sources," Applied Energy, Elsevier, vol. 87(5), pages 1535-1545, May.
    5. Kim, Yoon Jo & Kim, Sarah & Joshi, Yogendra K. & Fedorov, Andrei G. & Kohl, Paul A., 2012. "Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid," Energy, Elsevier, vol. 44(1), pages 1005-1016.
    6. Zhao Chen & Zaidi Mohd Ripin & Jie Wang, 2024. "Thermodynamic and Economic Analysis of a Phosphoric Acid Fuel Cell Combined Heating Cooling and Power System," Energies, MDPI, vol. 17(16), pages 1-16, August.
    7. Moreno, Daniel & Ferro, Víctor R. & de Riva, Juan & Santiago, Rubén & Moya, Cristian & Larriba, Marcos & Palomar, José, 2018. "Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis," Applied Energy, Elsevier, vol. 213(C), pages 179-194.
    8. Chen, Wei & Bai, Yang, 2016. "Thermal performance of an absorption-refrigeration system with [emim]Cu2Cl5/NH3 as working fluid," Energy, Elsevier, vol. 112(C), pages 332-341.
    9. Wang, Z.X. & Li, H.Y. & Zhang, X.F. & Wang, L.W. & Du, S. & Fang, C., 2020. "Performance analysis on a novel micro-scale combined cooling, heating and power (CCHP) system for domestic utilization driven by biomass energy," Renewable Energy, Elsevier, vol. 156(C), pages 1215-1232.
    10. Papadopoulos, Athanasios I. & Kyriakides, Alexios-Spyridon & Seferlis, Panos & Hassan, Ibrahim, 2019. "Absorption refrigeration processes with organic working fluid mixtures- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 239-270.
    11. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    12. Dong, Li & Zheng, Danxing & Nie, Nan & Li, Yun, 2012. "Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system," Applied Energy, Elsevier, vol. 98(C), pages 326-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:80:y:2005:i:4:p:383-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.