IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v79y2004i1p87-96.html
   My bibliography  Save this article

Numerical approach to loss minimization in an induction motor

Author

Listed:
  • Sujitjorn, S.
  • Areerak, K. -L.

Abstract

This paper describes a numerical approach to power-loss minimization in a fractional hp induction motor driven by a voltage-source inverter. The motor parameters are obtained from a genetic algorithm search. Optimum voltage and frequency excitations are arranged as a table for an energy-saving controller. The proposed method is useful under variable-torque load conditions. Simulation and experimental results are presented.

Suggested Citation

  • Sujitjorn, S. & Areerak, K. -L., 2004. "Numerical approach to loss minimization in an induction motor," Applied Energy, Elsevier, vol. 79(1), pages 87-96, September.
  • Handle: RePEc:eee:appene:v:79:y:2004:i:1:p:87-96
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00215-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
    2. Myeong-Hwan Hwang & Hae-Sol Lee & Se-Hyeon Yang & Hyun-Rok Cha & Sung-Jun Park, 2019. "Electromagnetic Field Analysis and Design of an Efficient Outer Rotor Inductor in the Low-Speed Section for Driving Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    4. Ding, Xiaofeng & Du, Min & Zhou, Tong & Guo, Hong & Zhang, Chengming, 2017. "Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 626-634.

    More about this item

    Keywords

    Loss minimization Induction motor;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:79:y:2004:i:1:p:87-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.