IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v74y2003i1-2p113-124.html
   My bibliography  Save this article

Aluminum-hydrogen peroxide fuel-cell studies

Author

Listed:
  • Brodrecht, David J.
  • Rusek, John J.

Abstract

Swift has developed an Al-H2O2 semi fuel-cell (SFC) that uses a novel approach to increase the maximum power output of the cell. Pure, high surface area aluminum flakes, courtesy of Transmet Corporation of Columbus, Ohio, are compressed to form the anode of the fuel cell. Using compressed flakes creates a greater surface area than is available with planar electrodes. The cathode is a gold-plated mesh, which allows the potassium hydroxide electrolyte and H2O2 oxidizer to flow through. A nylon mesh is situated between the cathode and anode in order to prevent short circuiting within the cell. This paper reports upon the viability of using these compressed aluminum flakes with hydrogen peroxide in a fuel-cell system. Tests are conducted to determine the maximum power available, the duration of the cell's effectiveness, and the efficiencies associated to corrosion of aluminum and decomposition of hydrogen peroxide. The above figures-of-merit are used to determine the optimum porosity of the aluminum anode. This porosity is also bounded by its ability to keep the electrical connection without breaking apart in the solution. Also discussed is the optimization of the potassium-hydroxide electrolyte and the hydrogen-peroxide concentrations.

Suggested Citation

  • Brodrecht, David J. & Rusek, John J., 2003. "Aluminum-hydrogen peroxide fuel-cell studies," Applied Energy, Elsevier, vol. 74(1-2), pages 113-124, January.
  • Handle: RePEc:eee:appene:v:74:y:2003:i:1-2:p:113-124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00137-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Disselkamp, Robert S., 2011. "Convenient storage of concentrated hydrogen peroxide as a CaO2ยท2H2O2(s)/H2O2(aq) slurry for energy storage applications," Applied Energy, Elsevier, vol. 88(11), pages 4214-4217.
    2. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    3. Heng Zhang & Yang Yang & Tianyu Liu & Honglong Chang, 2018. "Boosting the Power-Generation Performance of Micro-Sized Al-H 2 O 2 Fuel Cells by Using Silver Nanowires as the Cathode," Energies, MDPI, vol. 11(9), pages 1-10, September.
    4. Ezzat, M.F & Dincer, I., 2018. "Development and assessment of a new hybrid vehicle with ammonia and hydrogen," Applied Energy, Elsevier, vol. 219(C), pages 226-239.
    5. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether," Applied Energy, Elsevier, vol. 113(C), pages 488-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:74:y:2003:i:1-2:p:113-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.