IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v68y2001i1p19-29.html
   My bibliography  Save this article

Optimization of a liquefaction plant using genetic algorithms

Author

Listed:
  • Cammarata, G.
  • Fichera, A.
  • Guglielmino, D.

Abstract

This paper presents an optimization methodology for liquefaction/refrigeration systems in the cryogenic field. The Figure of Merit has been chosen as the evaluation index, and genetic algorithms as evaluation criteria. This methodology has been applied to an existing helium liquefaction system that works according to a Collins cycle. The results show the possibility of adjusting some of the thermal-pressure variables for the system in order to improve the Figure of Merit.

Suggested Citation

  • Cammarata, G. & Fichera, A. & Guglielmino, D., 2001. "Optimization of a liquefaction plant using genetic algorithms," Applied Energy, Elsevier, vol. 68(1), pages 19-29, January.
  • Handle: RePEc:eee:appene:v:68:y:2001:i:1:p:19-29
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(00)00041-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    2. Chen, Shuhang & Liu, Dongli & Li, Sizhuo & Gan, Zhihua & Qiu, Min, 2022. "Multi-objective thermo-economic optimization of Collins cycle," Energy, Elsevier, vol. 239(PD).
    3. Thomas, Rijo Jacob & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2012. "Application of exergy analysis in designing helium liquefiers," Energy, Elsevier, vol. 37(1), pages 207-219.
    4. Song, Rui & Cui, Mengmeng & Liu, Jianjun, 2017. "Single and multiple objective optimization of a natural gas liquefaction process," Energy, Elsevier, vol. 124(C), pages 19-28.
    5. Li, Yongliang & Wang, Xiang & Ding, Yulong, 2012. "An optimal design methodology for large-scale gas liquefaction," Applied Energy, Elsevier, vol. 99(C), pages 484-490.
    6. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2009. "The application of field synergy number in shell-and-tube heat exchanger optimization design," Applied Energy, Elsevier, vol. 86(10), pages 2079-2087, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:68:y:2001:i:1:p:19-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.