IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v66y2000i2p177-197.html
   My bibliography  Save this article

Free convection heat transfer and fluid flow above horizontal rectangular plates

Author

Listed:
  • Lewandowski, Witold M.
  • Radziemska, Ewa
  • Buzuk, Maciej
  • Bieszk, Henryk

Abstract

Results are presented from experimental and theoretical investigations of natural convective heat transfers from horizontal, rectangular, isothermal plates having different aspect ratios. Convective flow structures in water were visualized by injecting dye through openings along the edges of the plate for different values of the aspect ratio and Rayleigh number. Based upon these observations and previous studies of horizontal polygonal surfaces, two models for convective flow structures are proposed. In the first model, the direction of flow of the fluid was assumed to be perpendicular to the edges of the rectangle with the streamlines parallel to each other. In the second model, the flow was assumed to form structures in which the fluid flowed inwards radially from the edges. Solutions of these models are presented in the form of Nusselt-Rayleigh relations with the aspect ratio as a parameter. The theoretical solution was verified using water for rectangular plates having aspect ratios (i.e. length/width)=1 (square), 1.81, 2.52, 3.66, and 4.66.

Suggested Citation

  • Lewandowski, Witold M. & Radziemska, Ewa & Buzuk, Maciej & Bieszk, Henryk, 2000. "Free convection heat transfer and fluid flow above horizontal rectangular plates," Applied Energy, Elsevier, vol. 66(2), pages 177-197, June.
  • Handle: RePEc:eee:appene:v:66:y:2000:i:2:p:177-197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00024-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2013. "Thermal modelling of the cathode in air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 111(C), pages 529-537.
    2. Naoki Takada & Akio Tomiyama, 2007. "Numerical Simulation Of Isothermal And Thermal Two-Phase Flows Using Phase-Field Modeling," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 536-545.
    3. Victor Sofonea & Robert F. Sekerka, 2005. "Diffusivity Of Two-Component Isothermal Finite Difference Lattice Boltzmann Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1075-1090.
    4. Santosh Ansumali & Shyam Sunder Chikatamarla & Christos Emmanouil Frouzakis & Konstantinos Boulouchos, 2004. "Entropic Lattice Boltzmann Simulation Of The Flow Past Square Cylinder," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 435-445.
    5. Artur Cristea, 2006. "Numerical Effects In A Finite Difference Lattice Boltzmann Model For Liquid-Vapour Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 17(08), pages 1191-1201.
    6. Sardar Bilal & Maryam Rehman & Samad Noeiaghdam & Hijaz Ahmad & Ali Akgül, 2021. "Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal," Energies, MDPI, vol. 14(17), pages 1-17, August.
    7. Huang, Si-Min & Yang, Minlin, 2013. "Longitudinal fluid flow and heat transfer between an elliptical hollow fiber membrane tube bank used for air humidification," Applied Energy, Elsevier, vol. 112(C), pages 75-82.
    8. Rupesh B. Kotapati & Richard Shock & Hudong Chen, 2014. "Lattice-Boltzmann Simulations Of Flows Over Backward-Facing Inclined Steps," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(01), pages 1-14.
    9. Artur Cristea & Victor Sofonea, 2003. "Reduction Of Spurious Velocity In Finite Difference Lattice Boltzmann Models For Liquid–Vapor Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(09), pages 1251-1266.
    10. Yong Rao & Yushan Ni & Chaofeng Liu, 2008. "Flow Effect Around Two Square Cylinders Arranged Side By Side Using Lattice Boltzmann Method," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(11), pages 1683-1694.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:66:y:2000:i:2:p:177-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.