IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v61y1998i1p1-12.html
   My bibliography  Save this article

Analysis on waste-heat transportation systems with different heat-energy carriers

Author

Listed:
  • Hasegawa, Hideo
  • Ishitani, Hisashi
  • Matsuhashi, Ryuji
  • Yoshioka, Michifumi

Abstract

The transport of what would otherwise be waste-heat (at temperatures between 30°C and 300°C) through pipelines using as an energy carrier either methanol or hydrogen gas has been studied. By using numerical models, the relative costs of new kinds of waste-heat transportation systems are evaluated and compared with those using vapor or hot water, which have been the major energy-carriers in pipeline transmission systems until now. Also, environmental regulations and a carbon tax are investigated as incentives for introducing these systems.

Suggested Citation

  • Hasegawa, Hideo & Ishitani, Hisashi & Matsuhashi, Ryuji & Yoshioka, Michifumi, 1998. "Analysis on waste-heat transportation systems with different heat-energy carriers," Applied Energy, Elsevier, vol. 61(1), pages 1-12, September.
  • Handle: RePEc:eee:appene:v:61:y:1998:i:1:p:1-12
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(98)00037-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    2. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Ma, Q. & Luo, L. & Wang, R.Z. & Sauce, G., 2009. "A review on transportation of heat energy over long distance: Exploratory development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1532-1540, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:61:y:1998:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.