IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v60y1998i2p89-100.html
   My bibliography  Save this article

Artificial neural networks for modelling the starting-up of a solar steam-generator

Author

Listed:
  • Kalogirou, Soteris A.
  • Neocleous, Constantinos C.
  • Schizas, Christos N.

Abstract

An experimental solar steam generator, consisting of a parabolic trough collector, a high-pressure steam circuit, and a suitable flash vessel has been constructed and tested in order to establish the thermodynamic performance during heat-up. The heat-up energy requirement has a marked effect on the system's performance because solar energy collected during the heating-up period is lost at night due to the diurnal cycle. This depends mostly on the dimensions and the inventory of the flash vessel, and the prevailing environmental conditions. Experimental data were obtained and used to train an artificial neural network in order to implement a mapping between easily measurable features (environmental conditions, water content and vessel dimensions) and the system temperatures. Such mapping may be useful to system designers when seeking to find the optimal vessel-dimensions. The trained network predicted very well the response of the system, as indicated by the statistical R-squared value of 0.999 obtained and a maximum deviation between predicted and actual values being less than 3.9%. This degree of accuracy is acceptable in the design of such systems. The results are important, because the system was tested during its heat-up cycle, under transient conditions, which is quite difficult to model analytically.

Suggested Citation

  • Kalogirou, Soteris A. & Neocleous, Constantinos C. & Schizas, Christos N., 1998. "Artificial neural networks for modelling the starting-up of a solar steam-generator," Applied Energy, Elsevier, vol. 60(2), pages 89-100, June.
  • Handle: RePEc:eee:appene:v:60:y:1998:i:2:p:89-100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(98)00019-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalogirou, S.A. & Mathioulakis, E. & Belessiotis, V., 2014. "Artificial neural networks for the performance prediction of large solar systems," Renewable Energy, Elsevier, vol. 63(C), pages 90-97.
    2. Zhijian Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine," Energies, MDPI, vol. 8(8), pages 1-21, August.
    3. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    4. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    5. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    6. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2020. "A method to account for transient performance requirements in the design of steam generators for concentrated solar power applications," Applied Energy, Elsevier, vol. 269(C).
    7. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:60:y:1998:i:2:p:89-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.