IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v53y1996i4p325-340.html
   My bibliography  Save this article

Development of a simulation tool to enable optimisation of the energy consumption of the industrial timber-drying process

Author

Listed:
  • Cronin, K.
  • Norton, B.
  • Taylor, J.
  • Riepen, M.
  • Dalhuijsen, A.

Abstract

Reducing the liquid content of green products is an important step in the manufacture of many products. Process conditions in the drying phase have significant influences on the quality of the end product and on energy consumption and required manufacturing time. Effective optimisation of the drying process requires accurate representation of the drying product and its interaction with its environment. The development of a computer simulation tool to analyse the industrial batch timber drying process is outlined. A detailed finite difference product model describing the heat and mass transfers within a plank during drying is described. It is integrated with a customised CFD code characterising the process conditions within the drying chamber. Simulation output from the integrated model is used to generate a macroscopic representation of the product in its drying environment. This representation is included as a component in a modular industrial installation simulation environment. Analysis with this global model can lead to optimisation of energy consumption of the industrial timber drying process whilst maintaining product quality and acceptable drying duration.

Suggested Citation

  • Cronin, K. & Norton, B. & Taylor, J. & Riepen, M. & Dalhuijsen, A., 1996. "Development of a simulation tool to enable optimisation of the energy consumption of the industrial timber-drying process," Applied Energy, Elsevier, vol. 53(4), pages 325-340, April.
  • Handle: RePEc:eee:appene:v:53:y:1996:i:4:p:325-340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(95)00026-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    2. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:53:y:1996:i:4:p:325-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.