Author
Listed:
- Chen, Zhen
- Liu, Weijie
- Zhou, Di
- Xia, Tangbin
- Pan, Ershun
Abstract
Inconsistency is an essential cause of weakening the performance of lithium-ion battery packs. Accurate identification of inconsistent batteries is of great significance to the health management of battery energy storage systems (ESSs). Most existing methods require prior knowledge and fail to get optimal representations of dynamic characteristics of batteries, which are no longer suitable for online scenarios with time-varying inconsistency levels. This paper proposes an online unsupervised multi-level inconsistency identification method for battery ESSs based on deep embedded clustering. Firstly, discriminative latent representations are extracted from charge-discharge voltage curves by an improved autoencoder considering both information preservation and reconstruction errors. Secondly, a deep embedded clustering model based on the improved autoencoder and K-means algorithm is built, and then a greedy algorithm is designed to alternately optimize both the latent representations and cluster structures of battery packs without relying on prior knowledge. Thirdly, a distance-based multilevel inconsistency identification framework is constructed for the online consistency management of ESSs. Finally, five months of real-world ESS station data are used to validate the proposed method. The mean clustering inertia indices of our proposed method are respectively 0.9358, 1.1931, 2.1389, and 1.0086 for the four studied battery groups, and the mean Davies-Bouldin indices are respectively 0.7388, 0.7853 0.6396, and 0.6554 for these battery groups, demonstrating higher clustering quality and outperforming other comparative methods. Additionally, compared to the battery management system, the proposed method can identify additional severely inconsistent battery packs within the four battery groups. Furthermore, it has also been successfully applied to a public dataset. All these results prove that the inconsistent batteries can be identified robustly and accurately.
Suggested Citation
Chen, Zhen & Liu, Weijie & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2025.
"Inconsistency identification for Lithium-ion battery energy storage systems using deep embedded clustering,"
Applied Energy, Elsevier, vol. 388(C).
Handle:
RePEc:eee:appene:v:388:y:2025:i:c:s0306261925004076
DOI: 10.1016/j.apenergy.2025.125677
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925004076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.