IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925003812.html
   My bibliography  Save this article

Effect of the number of parallel batteries on thermal runaway evolution in LiFePO4 battery

Author

Listed:
  • Zhou, Zhizuan
  • Li, Maoyu
  • Zhou, Xiaodong
  • Ju, Xiaoyu
  • Yang, Lizhong

Abstract

With the increasing demand for longer drive range, lithium-ion batteries (LIBs) are connected in parallel and in series to meet the power requirement of electric vehicles. In contrast to series connection, the presence of parallel connection may exacerbate thermal runaway (TR) issues of LIBs owing to the possible electricity transfer between batteries. However, the complex electricity and heat interactions between parallel-connected LIBs challenge the in-depth understanding of the effects of parallel connection on TR evolution. In this study, detailed effects of the number of parallel-connected batteries on TR evolution mechanisms are investigated by removing the heat conduction between batteries. Differing from the conventional belief that the electricity transfer is interrupted when the electrochemical system inside battery is damaged in the process of TR, it has been observed that the continuous electricity transfer occurs in the batteries connected in parallel with more than two units. Increasing the number of parallel-connected batteries facilitates the occurrence of continuous electricity transfer. The occurrence of TR is significantly advanced and the corresponding onset temperature decreases from more than 200 °C to less than 180 °C when the number of parallel batteries exceeds two, and the transferred electrical energy between batteries is determined as the dominant cause of the advanced TR. Particularly, parallel-connected batteries with more numbers exhibit a higher risk of fire during TR because of the ignition role of transferred electrical energy. This work reveals the detailed effects of the number of parallel batteries on TR evolution and triggering mechanisms, which contributes to sufficient evidence for reliable early warning and safety design of energy systems containing parallel-connected batteries.

Suggested Citation

  • Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2025. "Effect of the number of parallel batteries on thermal runaway evolution in LiFePO4 battery," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003812
    DOI: 10.1016/j.apenergy.2025.125651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.