IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925003745.html
   My bibliography  Save this article

Developing deep learning-based model for silicon-based solar cells in concentrator photovoltaic systems: A real-time prediction for efficient application-oriented performance

Author

Listed:
  • Elsabahy, Mohamed M.
  • Emam, Mohamed
  • Nada, Sameh A.

Abstract

Concentrator photovoltaic (CPV) technology harnesses intense incident solar radiation, offering the potential for simultaneous electrical power generation and thermal utilization via compact, cost-effective heat sinks. However, maximizing the concentration ratio necessitates intensive cooling, resulting in low-grade heat generation. On the other hand, to achieve the demanded temperature of this low-grade heat generation for thermally driven applications, several operational and design parameters, including concentration ratio and heat sink characteristics, need to be harmonized. This can be numerically revealed using the conventional finite volume method (FVM) through optimization techniques/intensive parametric studies for wide-range concentration ratios under different cooling techniques which needs a prohibited computational cost and time. Addressing this challenge, the present work develops a deep learning-based model as a computationally efficient alternative for real-time performance prediction of silicon-based solar cells. The model is trained and validated using extensive datasets from a numerically and experimentally validated 3D thermal-fluid FVM model. These datasets cover wide variations in concentration ratios, heatsink heat transfer coefficients, meteorological conditions (ambient temperature and wind speed), cell reference characteristics (reference efficiency and temperature coefficient), and cell structure providing a comprehensive input-output mapping. The optimized neural network demonstrates high accuracy and reliability with a minimal mean square error and a coefficient of determination approaching unity. Furthermore, a user-friendly software with a graphical user interface (GUI) is developed, enabling two modes of analysis: real-time performance optimization through dynamic design parameter adjustments and real-time solutions for massive parametric studies. This novel workflow significantly reduces computational costs and processing times, facilitating instantaneous generation of characteristic performance maps (CPMAPs). The proposed approach accelerates decision-making for CPV applications and can be extended to other energy-related technologies, offering a transformative tool for both industry and research communities.

Suggested Citation

  • Elsabahy, Mohamed M. & Emam, Mohamed & Nada, Sameh A., 2025. "Developing deep learning-based model for silicon-based solar cells in concentrator photovoltaic systems: A real-time prediction for efficient application-oriented performance," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003745
    DOI: 10.1016/j.apenergy.2025.125644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925003745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.