IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925003083.html
   My bibliography  Save this article

Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network

Author

Listed:
  • Lin, Peijie
  • Guo, Feng
  • Lin, Yaohai
  • Cheng, Shuying
  • Lu, Xiaoyang
  • Chen, Zhicong
  • Wu, Lijun

Abstract

Recently, promising progresses have been made in photovoltaic (PV) arrays fault diagnosis (FD) due to the importance of operation and maintenance of PV power plants. However, PV arrays inevitably experience gradual degradation due to the complexity of operating conditions, resulting in domain shift of output data, which has a significant negative impact on the performance of FD. To address these problems, this study proposes a two-stage cross-domain, i.e., adaptive generative adversarial network deep learning approach for PV arrays FD under different degradation levels. In the first stage, the Normal data from the source domain (PV arrays without performance degradation) is utilized for training. Then, the Maximum Mean Discrepancy (MMD) loss is introduced to the fault generators in adversarial training to produce high-level feature representations of source domain fault data. In the second stage, identical training steps are used to guide the fault generators. Specifically, Normal data from the target domain i.e., PV arrays with performance degradation, is utilized to generate fault data features that are consistent with the target domain features. Then, the cross-domain adaptive FD model can be trained by using generated fault data features. The proposed model can not only learn the relationship from the different types of data, but also utilize target domain PV array data under healthy conditions to manually generate fake samples for cross-domain adaptive FD. Experimental results show that the Precision of the proposed model in the two tasks is 98.34 % and 92.93 %, with Recall is 98.23 % and 94.13 %, F1-Score is 0.9823 and 0.9274, all of which are better than those of the comparison models.

Suggested Citation

  • Lin, Peijie & Guo, Feng & Lin, Yaohai & Cheng, Shuying & Lu, Xiaoyang & Chen, Zhicong & Wu, Lijun, 2025. "Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003083
    DOI: 10.1016/j.apenergy.2025.125578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.