IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925003034.html
   My bibliography  Save this article

Experimental design and assessment of a novel mixed-cooling proton exchange membrane fuel cells stack for enhanced power generation and thermal management

Author

Listed:
  • Yang, Mingguang
  • Quan, Zhenhua
  • Wang, Lincheng
  • Chang, Zejian
  • Zhao, Yaohua
  • Xing, Lei
  • Xuan, Jin

Abstract

In this study, a novel mixed-cooling proton exchange membrane fuel cells (PEMFCs) stack is proposed and fabricated, which has been specially tailored with an efficient mixed cooling pathway. Compared with conventional air-cooled stacks and previous-generation split-cooling stacks equipped with micro heat pipe arrays, the mixed-cooling stack achieves higher load capacity, improved power generation performance, and superior thermal performance. In addition, the mixed-cooling stack is configured with fewer fans, resulting in lower additional power consumption and a more uniform voltage distribution. The experimental results indicate that the load capacity of the mixed-cooling stack is 14.3 % higher than that of the split-cooling stack and shows a 71.4 % increase compared to the ordinary air-cooled PEMFC stack of the same specification. At the same current, the net power output of the mixed-cooling stack is 65.9 W higher than that of the split-cooling stack. When operating at 30 A, the maximum voltage difference for a single cell within the mixed-cooling stack is only 0.100 V, and the voltage uniformity index is 70.2 % lower than that of the split-cooling stack. Furthermore, the temperature uniform index of the mixed-cooling stack is superior to that of the split-cooling stack under identical current conditions.

Suggested Citation

  • Yang, Mingguang & Quan, Zhenhua & Wang, Lincheng & Chang, Zejian & Zhao, Yaohua & Xing, Lei & Xuan, Jin, 2025. "Experimental design and assessment of a novel mixed-cooling proton exchange membrane fuel cells stack for enhanced power generation and thermal management," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003034
    DOI: 10.1016/j.apenergy.2025.125573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.