Author
Listed:
- Casella, Virginia
- Ferro, Giulio
- Parodi, Luca
- Robba, Michela
Abstract
To respond to the global need for sustainable energy solutions and the imperative to combat climate change, Renewable Energy Communities (REC) have emerged as a promising solution to achieve energy transition goals. Of course, some optimization tools need to be developed to face the challenges related to their operational management and maximize their potential. In this context, this paper proposes a bilevel optimization approach for the optimal management of a REC, focusing on maximizing shared energy and economic benefits. The high-level models the problem of the Energy Community Manager (ECM), who aims at maximizing shared energy rewarded with incentives depending on the plants according to the new legislation; instead, the low-level problems focus on each Energy Community Participant (ECP) aiming to minimize individual costs. To solve this problem Karush-Kuhn-Tucker (KKT) conditions are exploited to convert low-level problems into constraints for the high-level problem. Two different approaches (MILP and NLP formulations) to approximate the high-level objective function are proposed and tested, and the best approach is applied to a case study involving ten ECPs. The scalability of the proposed approach is evaluated as well as the impact of the most influencing parameters. According to the results, each ECP would obtain an annual income for sharing energy, which could be significant, especially when proper pricing strategies are considered. Moreover, the proposed model is suitable for online operations as the runtime is quite low.
Suggested Citation
Casella, Virginia & Ferro, Giulio & Parodi, Luca & Robba, Michela, 2025.
"Maximizing shared benefits in renewable energy communities: A Bilevel optimization model,"
Applied Energy, Elsevier, vol. 386(C).
Handle:
RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002922
DOI: 10.1016/j.apenergy.2025.125562
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002922. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.