IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925002739.html
   My bibliography  Save this article

Quantitative investigation of internal polarization in a proton exchange membrane water electrolyzer stack using distribution of relaxation times

Author

Listed:
  • Zuo, Jian
  • Steiner, Nadia Yousfi
  • Li, Zhongliang
  • Hissel, Daniel

Abstract

Proton exchange membrane water electrolyzer (PEMWE) is a promising technology for hydrogen production due to its ability to operate at high currents, compact design, and high produced hydrogen purity. However, the high cost and limited durability challenges must be addressed to advance the commercialization of PEMWEs. Accessing the internal polarization processes is crucial to understanding the performance of PEMWEs and guiding their design and operation. In practice, the output voltage amplitude on a specific current value is often considered a performance indicator. However, PEMWEs are complex systems with multiple polarization processes that are inaccessible using global indicators such as voltage. We propose a distribution of relaxation times (DRT) based approach to overcome this challenge. DRT is a model-free method that deconvolutes the electrochemical impedance spectroscopy data into a series of relaxation times, corresponding to different internal polarization processes. The results show that the internal polarization processes of the PEMWE can be decomposed into four peaks, corresponding to proton transport in the ionomer of catalyst layer, charge transfer during oxygen evolution reaction and hydrogen evolution reaction, and mass transport. The contribution of these processes and high-frequency resistance (HFR) to the overall overpotential losses are further quantified, which indicates that HFR (79.4%) and charge transfer (16.4%) are the two dominant factors. Finally, the influence of operating temperature and cathode pressure on the performance of the PEMWE is quantified using the proposed approach. This approach can be generalized to identify the degradation root cause of PEMWEs which can guide material enhancement and operation optimization to improve the efficiency and durability of PEMWEs.

Suggested Citation

  • Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2025. "Quantitative investigation of internal polarization in a proton exchange membrane water electrolyzer stack using distribution of relaxation times," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002739
    DOI: 10.1016/j.apenergy.2025.125543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.