Author
Listed:
- Sujan, Vivek A.
- Sun, Ruixiao
- Snyder, Isabelle
Abstract
The widespread adoption of zero-emission vehicles in heavy-duty (HD) commercial freight transportation faces considerable technoeconomic challenges. For heavy-duty trucks, ensuring high uptime, cost parity with diesel, and safety standards is especially critical as these vehicles operate over long distances with heavy loads, where any downtime or off-nominal behaviors significantly impacts logistics, productivity, and the total cost of ownership. Unlike traditional diesel refueling, BEV charging infrastructure must be co-optimized with vehicle deployment, operational demands, and grid capacity to ensure cost-effective and reliable freight operations. However, the lack of a standardized ownership and service model has led to a fragmented approach—where commercial vehicle operators may invest in, own, and maintain both vehicle/batteries and charging/energy infrastructure. This disconnect may exclude energy service providers from the equation, forcing fleet operators to explore ‘behind-the-fence’ energy solutions that increase capital investment, operational downtime, overhead costs, and, in some cases, net carbon emissions. To address these issues, this study introduces OR-AGENT (Optimal Regional Architecture Generation for Efficient National Transport), a comprehensive modeling framework that integrates powertrain architectures, charging infrastructures, and energy backbone systems into a cohesive strategy. In this paper, OR-AGENT is applied to develop an interconnected systems architecture for energy efficiency and resiliency enhancement of heavy-duty drayage vehicles at the Port of Savannah, GA. This framework showcases an interconnected systems approach to electrifying heavy-duty drayage vehicles at the Port of Savannah, GA. The study assessed BEVs with 400–1200 kWh battery capacities, accounting for seasonal variations in weather and freight routing. A diverse charging mix (150 kW–1250 kW) was evaluated alongside grid capacity constraints, cost, and carbon intensity analysis, leading to the development of a strategic microgrid/Distributed Energy Resources (DER) deployment architecture to ensure a reliable and sustainable transition. However, the findings also highlight the need for alternative zero-emission solutions for remaining trips, such as larger batteries, electrified roadways, hydrogen powertrains, or net-zero emission fuels. The findings are incorporated into a Total Cost of Ownership (TCO) model to identify optimal architectures for an interconnected electrified ecosystem.
Suggested Citation
Sujan, Vivek A. & Sun, Ruixiao & Snyder, Isabelle, 2025.
"OR-AGENT framework – Architecting electrified heavy-duty drayage applications,"
Applied Energy, Elsevier, vol. 386(C).
Handle:
RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002703
DOI: 10.1016/j.apenergy.2025.125540
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002703. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.