IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics0306261925002752.html
   My bibliography  Save this article

Experimental and simulation study on internal thermal runaway development drives venting and flammable gas risk evaluate of Lithium-ion battery

Author

Listed:
  • Wang, Peiben
  • Xu, Chengshan
  • Huang, Jingru
  • Zhang, Mengqi
  • Jiang, Fachao
  • Feng, Xuning

Abstract

Heat generation and gas venting are the primary characteristics of thermal runaway in lithium-ion batteries. The convective and diffusive properties of the venting gas pose significant challenges for hazard analysis and safety assessment of thermal runaway venting. Quantifying the potential combustion risk associated with the vented flammable gases is crucial for ensuring battery safety. In this study, we investigated the thermal runaway venting behavior of Li(Ni0.8Co0.1Mn0.1)O2 prismatic cells through experimental and simulation methods. The results indicate that the battery has discharged 4.83 mol of combustible gas. The gas composition mainly consists of H2 (20.5 %), C2H4 (12.5 %), CH4 (5.5 %), CO (27.9 %), and CO2 (28.6 %). Gas combustion account for 19.6 % of the total venting time. We propose an internal thermal runaway progression-driven venting and flammable gas risk evaluation model. This model assesses the combustion risk of flammable gases during the venting process and identifies high-risk areas where gas combustion may occur, specifically the area 1 m above the safety valve, which exhibits the highest risk for flammable gas combustion and possesses the greatest explosive power. This research is poised to make a significant contribution to the safe design of battery pack systems.

Suggested Citation

  • Wang, Peiben & Xu, Chengshan & Huang, Jingru & Zhang, Mengqi & Jiang, Fachao & Feng, Xuning, 2025. "Experimental and simulation study on internal thermal runaway development drives venting and flammable gas risk evaluate of Lithium-ion battery," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002752
    DOI: 10.1016/j.apenergy.2025.125545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.