IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics0306261925002107.html
   My bibliography  Save this article

Energy storage in combined gas-electric energy transitions models: The case of California

Author

Listed:
  • Saad, Dimitri M.
  • Sodwatana, Mo
  • Sherwin, Evan D.
  • Brandt, Adam R.

Abstract

California’s vision for a net-zero future by 2045 relies heavily on variable renewable energy systems. Thus, energy storage - particularly long-duration storage - could play a fundamental role in reliably supplying low-carbon electricity. We study energy storage using the BRIDGES model, a combined gas-electric capacity expansion model for California across multiple investment periods (2025-2045), modeled with progressively decreasing carbon emission targets to a zero emissions by 2045. This least-cost optimization model includes renewable gas production via power-to-gas, long-term storage of energy in gaseous form, electric energy storage such as through batteries and hydrogen storage, and renewable energy generation, all with capacity tracking and investment. Multiple scenarios are evaluated to examine the sensitivity of the optimal storage portfolio to system-level and sector-level parameters. The scenario results show that all electric energy storage systems - which vary in storage duration - are deployed and required in a net-zero California in 2045, amounting to around 75 GW of storage capacity. Lithium ion systems make up approximately 80% of this power capacity and supply most short-run storage needs. Hydrogen storage - in the form of a power-to-gas-to-power system - emerges as a replacement to conventional natural gas storage, comprising most of the total energy storage capacity (∼ 4 TWh). This capacity is less than 5% of the current natural gas storage capacity (94 TWh), indicating sufficient room for repurposing part of the gas infrastructure. A demand-side sensitivity analysis proves that higher electricity demand correlates with more builds of Li-ion batteries, while higher industrial heat demand leads to more builds of long-duration storage systems in a net-zero economy. Moreover, power-to-gas systems satisfy part of the industrial heat demand by locally supplying renewable gas, which overtakes the traditional centralized gas storage and transfers through pipelines, casting significant doubts on the future of the large-scale gas infrastructure.

Suggested Citation

  • Saad, Dimitri M. & Sodwatana, Mo & Sherwin, Evan D. & Brandt, Adam R., 2025. "Energy storage in combined gas-electric energy transitions models: The case of California," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002107
    DOI: 10.1016/j.apenergy.2025.125480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.