IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics0306261925001692.html
   My bibliography  Save this article

Multi-view graph contrastive representative learning for intrusion detection in EV charging station

Author

Listed:
  • Li, Yi
  • Chen, Guo
  • Dong, Zhaoyang

Abstract

With the rapid proliferation of electric vehicles (EVs), the need to enhance EV charging infrastructure with integrated communication and software functionalities has become crucial. However, this integration also introduces new cybersecurity vulnerabilities, as sensitive data and operational control are increasingly exposed to potential attacks. Traditional intrusion detection systems often struggle with overfitting, low recall, and the scarcity of high-quality labeled data or fail to consider the correlation among different features, challenging the effectiveness of supervised learning approaches. To address these limitations, this paper proposes a novel Multi-View Graph Contrastive Representation Learning (MVGCRL) framework that leverages logs from Hardware Performance Counters (HPCs) collected from Electric Vehicle Supply Equipment (EVSE) and represents them as graph structure data. By constructing graph views for both hardware components and temporal windows, the framework utilizes a Graph Neural Network (GNN) model to capture correlations among various input features in a multi-view manner. This work designed a supervised intrusion detection system (IDS) for multi-class classification. Specifically, our method introduces hybrid graph augmentations through node feature masking and edge weight perturbation, and then employs a novel mask-attention Graph Transformer to capture complex feature correlations. Additionally, MVGCRL is extended to a self-supervised learning version by minimizing the distance between node embeddings and input features, followed by fine-tuning for improved classification. Experiments on real-world datasets demonstrate that our approach outperforms both traditional supervised methods and state-of-the-art self-supervised learning models, offering an effective solution for enhancing cybersecurity in EV charging infrastructures.

Suggested Citation

  • Li, Yi & Chen, Guo & Dong, Zhaoyang, 2025. "Multi-view graph contrastive representative learning for intrusion detection in EV charging station," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925001692
    DOI: 10.1016/j.apenergy.2025.125439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925001692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.