IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925002326.html
   My bibliography  Save this article

Thermal gradient optimization in independent cascade heat pumps for efficient ultra-high temperature heating

Author

Listed:
  • Ji, Qiang
  • Pan, Tengxiang
  • Li, Yizhen
  • Che, Chunwen
  • Huang, Gongsheng
  • Yin, Yonggao

Abstract

Air source compression-absorption hybrid heat pumps hold promise for industrial decarbonization, but their current temperature lift capacity remains insufficient to meet ultra-high temperature requirements. Moreover, in elementary independent cascade configurations, all compression sub-loops operate at the same evaporation temperature. This lack of targeted optimization results in higher compressor power consumption and reduced efficiency. To overcome these limitations, an advanced independent cascade design and two derivative heat pump configurations are constructed in this paper. These innovations aim to broaden the suitability of air source heat pumps for ultra-high temperature applications and push the boundaries of efficiency. Based on validated models, the results indicate that the proposed independent cascade evaporative thermal coupling heat pump can achieve a heated temperature of 204 °C from an input source of 10 °C, extending the temperature lift capacity by around 18 °C compared to the elementary independent cascade baseline. This advanced configuration, featuring optimized thermal gradient coupling between sub-loops, significantly reduces irreversible losses by 70.7 % relative to the baseline system. Moreover, it demonstrates marked improvements in performance, with COP and ECOP increasing by 57.9 % and 60.3 %, respectively, while reducing initial investment costs by 6.6 % to 8.3 %. These findings enhance the feasibility of sustainable industrial heating.

Suggested Citation

  • Ji, Qiang & Pan, Tengxiang & Li, Yizhen & Che, Chunwen & Huang, Gongsheng & Yin, Yonggao, 2025. "Thermal gradient optimization in independent cascade heat pumps for efficient ultra-high temperature heating," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002326
    DOI: 10.1016/j.apenergy.2025.125502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.