IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925002119.html
   My bibliography  Save this article

Large-temperature-lift energy storage heat transformer for deep thermal energy utilization

Author

Listed:
  • Ding, Zhixiong
  • Wu, Wei

Abstract

The features of low grade and instability hinder the extensive utilization of renewable energy. Energy upgrading technology is needed to turn unusable renewable energy into usable energy, and energy storage systems are also required to solve the mismatch problem between energy sources and end users. Therefore, the energy storage heat transformer (ESHT) based on the desorption-absorption cycle has been proposed and regarded as a promising solution. To further reduce the heat input temperature and improve the cycle performance for deep utilization of renewable energy, a novel two-stage ESHT cycle is proposed and investigated. Preliminary experiments are conducted and used to validate the established dynamic model. Then, the performance under different working conditions are compared between the basic and two-stage ESHT cycles. Results show that one of the two solution tanks in the two-stage ESHT achieves a higher concentration compared to basic ESHT, increasing from 55.7 % to 65 % with the same temperature lift of 30 °C. The energy storage density (ESD) is significantly improved from 51.0 kWh/m3 to 96.1 kWh/m3 with similar energy storage efficiency (ESE) and exergy efficiency (EXE). A maximum temperature lift of 50 °C is reached under an input temperature of 60 °C. A minimum heat input temperature of 55 °C is achieved with a temperature lift of 35 °C. This work aims to provide references and suggestions for the improvement of absorption-based ESHT.

Suggested Citation

  • Ding, Zhixiong & Wu, Wei, 2025. "Large-temperature-lift energy storage heat transformer for deep thermal energy utilization," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002119
    DOI: 10.1016/j.apenergy.2025.125481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.