IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001989.html
   My bibliography  Save this article

Harnessing direct seawater electrolysis for a sustainable offshore Hydrogen future: A critical review and perspective

Author

Listed:
  • Meharban, Faiza
  • Tang, Xiangmin
  • Yang, Shuang
  • Wu, Xiaotong
  • Lin, Chao
  • Tan, Lei
  • Hu, Weibo
  • Zhou, Dequan
  • Li, Jianming
  • Li, Xiaopeng

Abstract

The global drive for green hydrogen is pushing the boundaries of electrolyzer technology, aiming to operate efficiently in dynamic environments using impure water sources. Offshore hydrogen production presents a compelling opportunity by leveraging vast marine resources and reducing land conflicts. This paper explores the potential of offshore hydrogen production coupled with offshore renewable energy resources (wind and wave energy) utilizing direct seawater electrolysis (DSWE), highlighting their ability to reduce infrastructure complexity, lower energy consumption, and adapt to space constraints inherent to offshore environments. Current offshore projects, such as offshore wind and wave power generation, underscore the increasing relevance of offshore hydrogen production. Projects like Sealhyfe (France) and PosHYdon (Netherlands) are pioneering the integration of offshore wind with offshore green hydrogen production, demonstrating the feasibility of large-scale offshore operations. Despite existing challenges, such as unavailability of infrastructure for hydrogen transport to onshore consumer, electrolyzer compatibility with direct seawater and need for robust desalination techniques. Advancements in hybrid electrolyzer designs and novel electrocatalyst resistant to corrosion, can pave the way for efficient and cost-effective offshore hydrogen production. This paper discusses the state-of-the-art developments in DSWE technology and the strategic role it can play in sustainable offshore hydrogen generation, emphasizing the need for continued research and collaboration to overcome technical hurdles and accelerate commercialization.

Suggested Citation

  • Meharban, Faiza & Tang, Xiangmin & Yang, Shuang & Wu, Xiaotong & Lin, Chao & Tan, Lei & Hu, Weibo & Zhou, Dequan & Li, Jianming & Li, Xiaopeng, 2025. "Harnessing direct seawater electrolysis for a sustainable offshore Hydrogen future: A critical review and perspective," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001989
    DOI: 10.1016/j.apenergy.2025.125468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.