IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001977.html
   My bibliography  Save this article

Feasibility study of green ammonia and electricity production via an innovative wind-solar-biomass polygeneration system

Author

Listed:
  • Khoshgoftar Manesh, Mohammad Hasan
  • Davadgaran, Soheil
  • Mousavi Rabeti, Seyed Alireza
  • Blanco-Marigorta, Ana M.

Abstract

The increase in greenhouse gases in the world due to the use of fossil fuels and the risk of losing non-renewable resources are important factors in the expansion of renewable polygeneration systems. The current research focuses on integrating solar-biomass-wind renewable energies to produce power, process steam, and ammonia simultaneously. The general operation of the proposed system is that a syngas-solar hybrid boiler is used to produce steam at two low-pressure and medium-pressure levels. Medium-pressure steam has been used as the feed of gasification process unit along with air and municipal solid waste. The syngas produced from the gasification unit is used to supply boiler fuel and ammonia unit feed. Before the ammonia synthesis process, it is necessary to purify the feed syngas. In this regard, water gas shifting and CO2 capture units have been used for purification. Next, the purified syngas with nitrogen in the presence of ammonia synthesis reactors are converted to ammonia. The nitrogen feed needed by the unit is created through a cryogenic air separation unit that supplies its electricity from wind turbines. A part of the ammonia produced has been used to fuel the downstream power generation unit. The Brayton open cycle based on ammonia-hydrogen hybrid fuel uses the described ammonia stream. The hydrogen required by this unit is supplied from the wind PEM electrolyzer. Finally, supercritical carbon dioxide cycles and organic Rankine cycle have been used to recover heat output from the Brayton cycle. Geothermal energy has also been used to preheat the organic fluid entering the turbine to increase power. Energy, exergy, exergeoeconomic, and exergoenvironmental (4E) analyses, along with sensitivity analysis and multi-objective optimization using the dragonfly algorithm, were performed. The overall energy efficiency, exergy efficiency, total cost rate, and environmental impact rate were 31.33 %, 38.53 %, 1.56 $/s, and 14.77 mPts/s, respectively. Three-objective optimization improved energy efficiency by 1.72 % and reduced the total cost rate by 15.86 %. In optimal operation, the system produces 275.44 tons/day of ammonia, 3.17 kg/s of steam, and 18.51 MW of power. The payback period was calculated to be 3.29 years, but in real-world scenarios, it may be longer, so the result should be interpreted cautiously.

Suggested Citation

  • Khoshgoftar Manesh, Mohammad Hasan & Davadgaran, Soheil & Mousavi Rabeti, Seyed Alireza & Blanco-Marigorta, Ana M., 2025. "Feasibility study of green ammonia and electricity production via an innovative wind-solar-biomass polygeneration system," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001977
    DOI: 10.1016/j.apenergy.2025.125467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.