IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001795.html
   My bibliography  Save this article

Distributionally robust coordinated day-ahead scheduling of Cascade pumped hydro energy storage system and DC transmission

Author

Listed:
  • Liu, Mao
  • Kong, Xiangyu
  • Lian, Jijian
  • Wang, Jimin
  • Yang, Bohan

Abstract

Large-scale wind and solar power integration introduces significant operational uncertainty to power systems. To enhance the system's economic efficiency and reliability, this paper investigates the coordinated day-ahead scheduling of a multi-energy power system incorporating a cascade pumped hydro energy storage (CPHES) system and DC transmission. We propose a joint optimization model that minimizes the total system operating cost and renewable energy curtailment penalty, explicitly considering the flexible regulation capabilities of CPHES, DC transmission power losses, and various operational constraints. To effectively manage the uncertainty associated with wind and solar power forecasts, we develop a novel two-stage distributionally robust optimization (DRO) scheduling method based on moment information. This method constructs a moment-based ambiguity set, incorporating mean, variance, and skewness information, to effectively capture the uncertainty. Leveraging linearization techniques, duality theory, linear decision rules, and matrix transformations, the original problem is reformulated into a tractable mixed-integer linear programming (MILP) model. Case studies based on a modified IEEE 73-bus system and a real large-scale hydro-thermal power system in Brazil demonstrate that the proposed method effectively reduces system operating costs, improves wind and solar power accommodation, and enhances the system's resilience to output uncertainties.

Suggested Citation

  • Liu, Mao & Kong, Xiangyu & Lian, Jijian & Wang, Jimin & Yang, Bohan, 2025. "Distributionally robust coordinated day-ahead scheduling of Cascade pumped hydro energy storage system and DC transmission," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001795
    DOI: 10.1016/j.apenergy.2025.125449
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.