IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001369.html
   My bibliography  Save this article

A novel and efficient global maximum power tracking method for photovoltaic systems under complicated partial shading with repeatable irradiance conditions

Author

Listed:
  • Wang, Shun-Chung

Abstract

Partial shading conditions (PSC) significantly hinder the conversion efficiency of photovoltaic (PV) generation systems (PVGS), posing challenges for global maximum power point (GMPP) tracking (GMPPT). This paper proposes a novel and efficient two-stage GMPPT method to address the challenges, introducing multiple techniques to improve tracking performance under complicated and repeatable irradiance environments. In the first stage, a Lambert W-function (LWF)-based modeling and estimation mechanism are developed to identify the candidate shaded region (SR) containing the GMPP and its corresponding voltage operating point (VOP) using fewer samplings. In the second phase, the variable step size incremental conductance (VSSINC) method, starting from the VOP found in the first stage, takes over subsequent tracking to refine convergence on the GMPP. A PV system formed by a 5-series 1-parallel (5S1P) module string is utilized as a study case. The devised method demonstrates significant advancements compared to the four presented benchmark methods. Simulations across 2002 shading patterns (SP) achieve maximum improvement rates of 98.4 % in average tracking power error (ATPE), 8.1 % in total tracking success rate (TTSR), and 66.9 % in average tracking time (ATT). Experimental results under three random SPs show improvements of 93.1 % in average tracking power loss (ATPL), 5.31 % in average tracking accuracy (ATA), and 86.6 % in ATT, all of which outperform the counterparts. These results highlight the significant improvement in TTSR, robustness to changes in SP, and efficiency derived from the proposed accurate LWF-based system modeling and estimation for the critical VOPs. This study also provides a new solution for maximizing the power extraction from PVGS and paving the way for the broader application and advancement in solar technology.

Suggested Citation

  • Wang, Shun-Chung, 2025. "A novel and efficient global maximum power tracking method for photovoltaic systems under complicated partial shading with repeatable irradiance conditions," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001369
    DOI: 10.1016/j.apenergy.2025.125406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.