IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001345.html
   My bibliography  Save this article

A De-aggregation strategy based optimal co-scheduling of heterogeneous flexible resources in virtual power plant

Author

Listed:
  • Zheng, Zixuan
  • Li, Jie
  • Liu, Xiaoming
  • Huang, Chunjun
  • Hu, Wenxi
  • Xiao, Xianyong
  • Zhang, Shu
  • Zhou, Yongjun
  • Yue, Song
  • Zong, Yi

Abstract

Virtual power plant (VPP) serves as an effective solution for maintaining internal power balance and participating in external peak shaving auxiliary services within grid-connected microgrid involved in multi-type flexible resources (FRs). However, with increasing prominence of the feature heterogeneity in response behaviors of diverse FRs and their coupling in peak shaving poses challenges in the accurate decomposition of VPP scheduling commands. This paper proposes a de-aggregation strategy, utilizing discrete choice model and feature matching methods, to dynamically sequence FRs responses while optimizing VPP's peak shaving capability. Initially, heterogeneous features are refined and modeled to characterize the response capability of multi-type FRs in meeting the scheduled demand of grid-connected microgrid (SDGM). Subsequently, a feature difference quantification model and matching priority criterion are formulated to describe the feature mapping relationship and guide dynamic decision-making process. On this basis, the multi-type FRs are co-scheduled in the considered VPP to form a dynamic response sequence achieving peak shaving objectives. Case studies based on real data from a region-connected microgrid demonstrate the proposed strategy's performance in improving return on investment by 6.1 %, reducing peak shaving deviation and power exchange with main grid by 70 % and 13.1 %, respectively, and effectively improve the ability of grid-connected microgrid to balance the power and participate in peaking auxiliary services.

Suggested Citation

  • Zheng, Zixuan & Li, Jie & Liu, Xiaoming & Huang, Chunjun & Hu, Wenxi & Xiao, Xianyong & Zhang, Shu & Zhou, Yongjun & Yue, Song & Zong, Yi, 2025. "A De-aggregation strategy based optimal co-scheduling of heterogeneous flexible resources in virtual power plant," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001345
    DOI: 10.1016/j.apenergy.2025.125404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.