IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001151.html
   My bibliography  Save this article

Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors

Author

Listed:
  • Sheng, Wenjuan
  • Wang, Junkai
  • Peng, G.D.

Abstract

The accurate estimation of the state of charge (SOC) is essential to guarantee the safe and reliable operation of battery systems. Recently, more and more studies and applications have adopted optic fiber sensors to aid SOC estimation. However, it faces challenges such as limited performance and high costs. To address these challenges, this work proposed using a novel multi-position strain to enhance strain assistance for SOC estimation. Three fiber Bragg grating (FBG) sensors are arranged near the negative electrode, near the positive electrode, and in the middle of the battery, respectively. Strains at multiple positions are utilized as input features for the SOC estimation model, either individually, in dual combination, or triple combination. The impact of the number and placement of FBG sensors on SOC estimation is assessed. Temporal Convolutional Network (TCN), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU) were employed to evaluate the effectiveness of multi-position strain. Furthermore, an FBG demodulation system based on a tunable Fabry-Perot (FP) filter was built to obtain strain information from wavelength signals. Compared to the commercially demodulation systems, the proposed demodulation system achieves a cost reduction of over 90 %. Experimental results verify that, compared to a traditional single strain, the dual strains significantly improve SOC estimation accuracy. In static tests, the root mean squared error (RMSE) and mean absolute error (MAE) are reduced by up to 73.66 % and 71.72 %, respectively. In dynamic tests, RMSE and MAE reductions reach up to 72.49 % and 74.01 %, respectively.

Suggested Citation

  • Sheng, Wenjuan & Wang, Junkai & Peng, G.D., 2025. "Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001151
    DOI: 10.1016/j.apenergy.2025.125385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.