IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics030626192500090x.html
   My bibliography  Save this article

Transient modeling and analysis of a stepped-configuration thermoelectric generator considering non-uniform temperature distribution

Author

Listed:
  • Zhu, Xingzhuang
  • Zuo, Zhengxing
  • Wang, Wei
  • Zhang, Min
  • Yin, Qian
  • Liu, Ruiheng
  • Jia, Boru

Abstract

Aiming at the low output power(P) and conversion efficiency(η) of a conventional thermoelectric generator(TEG), a stepped-configuration TEG integrating half-Heusler-based(HH) and bismuth-telluride-based(BT) thermoelectric modules(TEM) is proposed in this paper. A transient model considering the temperature drop along the gas flow direction is developed to predict the performance of the TEG and proved to be reliable. The effects of time, spatial location, input temperature(Ta,0) and flow rate(ṁa) on the thermoelectric performance of the stepped-configuration TEG are investigated. The results show that the stabilization time of the thermoelectric properties of the high-temperature TEG with HH is shorter than that of the low-temperature TEG with BT, and there is inertia in the transfer of key thermal properties. The thermoelectric properties of the TEM decrease gradually along the gas flow direction and the spatial variation is related to the ratio of the area of the high and low temperature TEG (RHL). P and η of the stepped-configuration TEG increase with RHL by 8.6% and 15.5%, respectively. P increases with Ta,0 and ṁa and η varies with Ta,0 and ṁa in relation to RHL. The maximum P and η of the stepped-configuration TEG are 276.6 W and 5.90%, respectively, and the corresponding Ta,0 and ṁa are 1573 K and 8 g/s, respectively, which are 32.3% higher than that of the conventional TEG. ṁa is a decisive factor affecting the distribution of energy flow in the stepped-configuration TEG, which is more important than Ta,0 and RHL. This scheme can effectively improve η of TEG and provide useful guidance for the study of TEG.

Suggested Citation

  • Zhu, Xingzhuang & Zuo, Zhengxing & Wang, Wei & Zhang, Min & Yin, Qian & Liu, Ruiheng & Jia, Boru, 2025. "Transient modeling and analysis of a stepped-configuration thermoelectric generator considering non-uniform temperature distribution," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s030626192500090x
    DOI: 10.1016/j.apenergy.2025.125360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500090X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s030626192500090x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.