IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261925000030.html
   My bibliography  Save this article

A novel decision support system for enhancing long-term forecast accuracy in virtual power plants using bidirectional long short-term memory networks

Author

Listed:
  • Nadimi, Reza
  • Goto, Mika

Abstract

Accurate forecasting of power generation is a serious challenge of virtual power plant (VPP) in day ahead (DA) market because of the volatility and uncertainty of renewables. The recursive prediction technique used in bidirectional long short-term memory (BiLSTM) network often struggles with long-term accuracy. This study proposes a novel decision support system (DSS) to generate unknown future inputs, called “DSS test data”, in the recursive prediction technique and tackle the long-term forecasts limitation. The proposed DSS integrates the K-means clustering algorithm and the least squared optimization method. The K-means clustering algorithm classifies historical data into five distinct day types—rainy, overcast, partly cloudy, cloudy, and sunny—based on maximum daily power generation. The DSS employs least squared optimization method to refine the DSS test data for the BiLSTM model, utilizing the most recent seven days of data. Additionally, this study incorporates a variable lookback period within the BiLSTM model to enhance the accuracy of the forecasting model. The DSS-BiLSTM model forecasts VPP power generation 38 h ahead in the Japanese DA power market. Compared to BiLSTM, LSTM, transformer network, attention-based network, gated recurrent unit, and five statistical time series models, the proposed model demonstrates superior accuracy and reduced dispersion in long-term forecasts. The daily mean absolute error for the DSS-BiLSTM, BiLSTM, LSTM, transformer network, attention-based network, and gated recurrent unit models, for a 38-h forecast horizon, are 0.26 GW, 0.48 GW, 0.45 GW, 0.69 GW, 0.66 GW, and 0.62 GW, respectively. This pattern is consistent across the three other error metrics and various forecasting time horizons, indicating that the DSS-BiLSTM model consistently outperforms the other models evaluated in this study in terms of prediction accuracy. The main advantages of the proposed model include ease of implementation, low dispersion, and high forecasting accuracy across various settlement periods, as evidenced by multiple accuracy metrics.

Suggested Citation

  • Nadimi, Reza & Goto, Mika, 2025. "A novel decision support system for enhancing long-term forecast accuracy in virtual power plants using bidirectional long short-term memory networks," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000030
    DOI: 10.1016/j.apenergy.2025.125273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.