IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025716.html
   My bibliography  Save this article

Coupled degradation mechanism of electrochemical and mechanical performance of solid oxide fuel cells under thermal cycling

Author

Listed:
  • Zheng, Hongxiang
  • Jiang, Wenchun
  • Luo, Yun
  • Song, Ming
  • Zhang, Xiucheng
  • Tu, Shan-Tung

Abstract

Solid oxide fuel cells (SOFCs) are efficient energy conversion devices that directly convert chemical energy from fuel into electrical energy. Despite their potential, the commercialization of SOFCs faces significant challenges due to thermal cycling instability, which affects both electrochemical and mechanical performance. To address this issue, we employ electrochemical impedance spectroscopy, small punch testing, and nanoindentation techniques to investigate the changes in electrochemical and mechanical performance of SOFC stacks under 1 to 10 thermal cycles. The degradation mechanisms of SOFC performance are analyzed based on microstructure changes. The findings reveal a voltage degradation rate of 12.75 % after 10 thermal cycles at a current of 40 A. The significance of each degradation mechanism in voltage degradation is quantitatively determined. Ohmic resistance degradation is the dominant factor, followed by the degradation of the anode charge transfer reaction. The high-temperature flexural strength of the PEN decreases by 54.22 % after 10 thermal cycles, with the most significant deterioration occurring during the initial cycle. Additionally, after 10 thermal cycles, cathodic Sr segregation and substantial anodic deterioration are observed, including Ni particle coarsening, migration, and agglomeration. Based on the impact of anode Ni particle deterioration on both electrochemical and mechanical performance, a theoretical model of voltage and mechanical performance degradation is established. This model is significant for enhancing the thermal shock resistance of the SOFC stack.

Suggested Citation

  • Zheng, Hongxiang & Jiang, Wenchun & Luo, Yun & Song, Ming & Zhang, Xiucheng & Tu, Shan-Tung, 2025. "Coupled degradation mechanism of electrochemical and mechanical performance of solid oxide fuel cells under thermal cycling," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025716
    DOI: 10.1016/j.apenergy.2024.125187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.