IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025534.html
   My bibliography  Save this article

A review of physics-informed machine learning for building energy modeling

Author

Listed:
  • Ma, Zhihao
  • Jiang, Gang
  • Hu, Yuqing
  • Chen, Jianli

Abstract

Building energy modeling (BEM) refers to computational modeling of building energy use and indoor dynamics. As a critical component in sustainable and resilient building development, BEM is fundamental to support a diverse spectrum of applications, including but not limited to sustainable building design and retrofitting, building resilience analysis, smart building control. Currently, two main approaches, i.e., physics-based and data-driven modeling, exist within BEM. Despite significant advancements of machine learning (ML) and deep learning (DL) algorithms in recent years, several challenges remain to apply these data-driven approaches in BEM, including the necessity of obtaining sufficient and high-quality training data in algorithm development, unreliable and physically infeasible predictions, and limited algorithm interpretability and generality in applications. These contribute to distrust and impede the widespread adoption of these algorithms in BEM practices. To overcome these challenges, this work provides a comprehensive overview of Physics-Informed Machine Learning (PIML), a novel modeling approach that encodes physics principles and useful physical information into cutting-edge ML algorithms. This approach is designed for advanced building energy modeling with enhanced robustness and interpretability. Specifically, existing PIML methods for BEM are summarized and categorized into different paradigms to integrate physics into ML models, including physics-informed inputs, physics-informed loss functions, physics-informed architectural design, and physics-informed ensemble models. The challenges, including the effective integration of prior physical knowledge in modeling and the evaluation of developed PIML methods, in the development of PIML for BEM are then discussed. This review outlines extensive existing research works and future potential research directions to shed light on the broader application of PIML to support BEM practice.

Suggested Citation

  • Ma, Zhihao & Jiang, Gang & Hu, Yuqing & Chen, Jianli, 2025. "A review of physics-informed machine learning for building energy modeling," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025534
    DOI: 10.1016/j.apenergy.2024.125169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.