IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025224.html
   My bibliography  Save this article

Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles

Author

Listed:
  • Hu, Dong
  • Huang, Chao
  • Wu, Jingda
  • Wei, Henglai
  • Pi, Dawei

Abstract

This study addresses data efficiency and reliability issues in reinforcement learning (RL)-based energy management strategies (EMS) for hybrid electric vehicles (HEVs). A novel expert-guided RL (EGRL) paradigm is proposed, combining deep ensemble methods with a digital expert model (DEM) for real-time EMS intervention across various scenarios. DEM, trained via domain adversarially invariant meta-learning (DAIML), adapts to different driving conditions. An intervention mechanism, based on uncertainty evaluation in the deep ensemble, allows DEM to guide and supervise RL training, ensuring reliability. The EMS optimizes energy consumption, battery health, and electricity maintenance for the range-extended electric bus (REEB) system. Simulation results show the paradigm significantly improves energy management, nearing optimal performance and surpassing traditional RL methods. EGRL achieves an average 15.8% improvement in economic benefit across all test cycles. This research offers an innovative solution for EMS and has broad potential for other automation applications.

Suggested Citation

  • Hu, Dong & Huang, Chao & Wu, Jingda & Wei, Henglai & Pi, Dawei, 2025. "Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025224
    DOI: 10.1016/j.apenergy.2024.125138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.