IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025157.html
   My bibliography  Save this article

Behaviors of methane hydrate formation and growth with halo

Author

Listed:
  • Liu, Qingbin
  • Li, Shaohua
  • Jiang, Lanlan
  • Yang, Mingjun
  • Yu, Tao
  • Song, Yongchen

Abstract

Gas production efficiency is closely linked to the formation and growth of pore-scale methane hydrates (MH). This study presents a novel high-pressure micromodel equipped with a high-resolution CCD camera to observe MH morphology in situ, revealing the dynamic mechanisms during MH formation via diffusion. We describe the growth evolution of hydrate halos under static conditions and the influence of temperature. Halos grow from the interface to the gas phase, increasing the contact area between hydrate and grains. The halo's complexity, characterized by the fractal dimension, increased from 1.489 to 1.753 as it developed. Small droplets supplied water for halo growth through vapor pressure gradients. A dimensionless parameter H⁎ was introduced to indicate the potential contact between hydrate halos and liquid droplets, with a critical value of 1. The halo profile became more complex over time and with decreasing temperature. Halos slow hydrate decomposition and pose challenges for exploitation. Numerous small hydrate shell fragments formed under gas-water flow, enhancing gas-to-hydrate conversion rates. This study elucidates the kinetic growth mechanisms of hydrate halos under water vapor diffusion, offering valuable insights into MH storage in subsurface environments and providing crucial reference for their exploitation.

Suggested Citation

  • Liu, Qingbin & Li, Shaohua & Jiang, Lanlan & Yang, Mingjun & Yu, Tao & Song, Yongchen, 2025. "Behaviors of methane hydrate formation and growth with halo," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025157
    DOI: 10.1016/j.apenergy.2024.125131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.