IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025030.html
   My bibliography  Save this article

A scalable stochastic scheme for identifying critical substations considering the epistemic uncertainty of contingency in power systems

Author

Listed:
  • Zhao, Yirui
  • Gan, Wei
  • Yan, Mingyu
  • Wen, Jinyu
  • Zhou, Yue

Abstract

This paper proposes a scalable stochastic tri-level defender-attacker-defender (DAD) optimization model for large-scale power systems, aiming to identify critical substations for protection against extreme events such as floods and cyber-attacks. Given that the system planner may not know the exact number of components in contingency, stochastic optimization is utilized to handle this epistemic uncertainty. Unlike conventional stochastic DAD model that only consider the uncertainty of direct line disconnection, the proposed model focuses on the uncertainty on the number of damaged substations in context of cascading failures that initiated from substations to their associated lines. The degree of epistemic uncertainty on the number of damaged substations is classified as 3 types, which can be used to reduce the size of the proposed model. Due to the contingency screening for power systems being a high order NK problem, solving this tri-level model is of high computation complexity. Therefore, a network-flow-embedded (NFE) two-stage robust column and constraints generation algorithm is devised. The network flow model is used to approximate the DC optimal power flow in bottom level of the proposed model, eliminating the bi-linear terms introduced by line flow constraints. Tight upper bounds of the corresponding dual variables are derived based on the dual formulation of the network flow model. Numerical results based on the IEEE RTS 24-bus and 118-bus systems validate the effectiveness of the proposed model and demonstrate the greatly improved computational performance of the NFE C&CG algorithm-

Suggested Citation

  • Zhao, Yirui & Gan, Wei & Yan, Mingyu & Wen, Jinyu & Zhou, Yue, 2025. "A scalable stochastic scheme for identifying critical substations considering the epistemic uncertainty of contingency in power systems," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025030
    DOI: 10.1016/j.apenergy.2024.125119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.